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The advancement of next-generation sequencing (NGS) technology has considerably expanded our knowledge of the 
genesis of Mendelian a nd complex disorders. However, the complicated genomic nature of these diseases has slowed 
the discovery of their mutational causes. Diagnosis, treatment, and prevention can be aided by selecting the most 
appropriate genetic test for the task due to cost, capacity, and sequencing range. Whole-exome and whole- genome 
sequencing uncovers new mutations, and gene panels can be used to investigate the role of specific genes in various 
disorders. We explore the uses, advantages, and restrictions of NGS in neurology, cardiology, and pediatrics in this 
paper. Likewise, the view on the diagnosis of disorders and the application of precision medicine in their treatment was 
investigated. Examples of NGS- based research were presented in numerous groups of illnesses, including epilepsy, 
hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, LVNCs, and pediatric brain cancers. 
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INTRODUCTION 

The reading and identification of nucleotide patterns in 
organisms’ DNA, also known as genome sequencing, has 
been used for the past decades to decipher and delve 
deeper into organisms’ composition (Marian, 2014). 
Whole-genome or Sanger sequencing, which incorporates 
dideoxynucleotides at random into the DNA chain and 
uses electrophoresis to interpret the DNA, is the most 
well-known and common method of genome analysis. As 
a result, disease research may now be conducted in 
considerably greater depth, notably in the departments of 
cardiology, neurology, and pediatrics (Ravin , 2010). 

Over the past few years, a strong connection between 
hereditary variables and neurological illnesses has been 
revealed (Németh et al. 2013). Next-generation 
sequencing has greatly improved molecular genetic 
technology, allowing for the identification of numerous new 
diseases and the mutations responsible for them (Németh 
et al. 2013). The revolutionary technique has solved the 
problem of the diagnostic odyssey in neurological genetic 
conditions (Salunkhe et al. 2022). 

High throughput genomics has immense promise for 
the detection and treatment of patients suffering from both 
unusual and common forms of cardiovascular disease 
(Ware et al. 2011). For illnesses like cardiomyopathies, 

arrhythmic syndromes, acropathies, and other Mendelian-
inherited cardiovascular diseases, most guidelines 
recommend DNA testing (Charron et al. 2010; Grupa 
Robocza Europejskiego Towarzystwa Kardiologicznego 
2011), and using NGS for their diagnosis would ensure an 
improved and cost-effective outcome (Ware et al. 2011). 

NGS as a revolution in molecular biology has made 
personal genomes affordable. There is a significant 
optimism that NGS technologies will be successfully used 
to understand the biology of diseases, allowing for the 
development of precision medicine that would allow for 
treatment decisions based on a patient’s unique genetic 
background (Marian et al. 2014). 

The utilization of next-generation sequencing in the 
pediatric field is increasing, allowing researchers to 
identify the underlying mutations of an increasing number 
of hereditary diseases and develop new, more effective 
therapies for treating pediatric brain tumors (Németh et al. 
2013; Salunkhe et al. 2022). 

Since gene sequencing is widely used in medicine, 
particularly in clinical practice, a new approach was 
developed. First generation sequencing was the technique 
initially used to record mutations and variations in the 
human genome, but it had a number of drawbacks and 
inefficiencies, including time and the type of mutation. 
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NGS was developed as a more effective method that 
requires minimal time and finds many more sorts of 
variants. NGS, for example, could sequence the entire 
human genome in about a day. The previous Sanger 
sequencing technology, on the other hand, took more than 
ten years to fully decipher the human genome (Ravin 
2010). In this paper, we note the application and 
effectiveness of the recent method. 
 
 

 
 
Figure 1: Illustration of the temporal evolution of 
genetic sequencing technologies: from monogenic to 
complex genetic research analysis.  
 

(A) The process of Sanger Sequencing: 
deoxynucleotides are randomly incorporated into the DNA 
chain and is put through a process called electrophoresis 
to decipher the DNA. A time-consuming, limited, less 
efficient alternative to NGS; it takes almost a decade to 
reach the final draft. (B) The integration of genetic 
technologies (NGS and CGH) with computational 
strategies enables the identification of casual disease 
systems and patient categorization towards personalized 
medicine. Because it is massively parallel, NGS takes 
significantly less time than its counterpart (24 hours), while 
being up to 6000 times cheaper. 

2. Types of NGS 

2.1. Whole Genome Sequencing 
A rigorous method for investigating complete 

genomes is whole-genome sequencing (WGS). Mendelian 
diseases, inherited diseases, and personalized medicine 
have all benefited from genomic information. Due to 
constantly falling sequencing prices and the ability to 
generate massive volumes of data with today’s 
sequencers, whole-genome sequencing is a potent tool for 

genomics research. To be sequenced, DNA can be 
extracted from cell sources such as leukocytes in 
peripheral circulation and split into many pieces. These 
sequencing findings are subjected to advanced automated 
examination and cautious contrast with genomic reference 
sequences (in related databases) in order to obtain further 
annotated information (Biesecker et al. 2012; Westerink et 
al. 2014). WGS examines the entire genome for new gene 
variants, denovo mutations, and loci related to particular 
traits (Biesecker et al. 2012; Westerink et al. 2014), 
including but not limited to coding and noncoding regions. 
Exonic SNVs (Single Nucleotide Variants) and repeat 
expansions can be discovered using WGS. WGS fastened 
the discovery of three novel mitochondrial disease-
causing genes such as COX6A1, TIMMDC1, and COQ5 
(Malicdan et al. 2018; Tamiya et al. 2014). 
Furthermore, WGS includes more genes and exons than 
WES in the American College of Medical Genetics and 
Genomics (ACMG) and RefSeq databases (Meienberg et 
al. 2016). As a result, WGS is now regarded to be more 
effective than WES at detecting CNVs and SNVs. The 
complicated basis of polyneuropathies such as ALS was 
revealed by familial WGS (Gilissen et al. 2014) with a 
much greater rate of genomic coverage than WES. 
Notably, the vast number of WGS-identified variations can 
limit their proper prioritizing as well as WGS’s capacity to 
provide a clear explanation or interpretation of their 
relative significance (Koboldt et al. 2013; Altshuler et al. 
2015). However, as more non-coding variants and SVs 
are assessed, the diagnosis rate of WGS is projected to 
rise (Koboldt et al. 2013; Altshuler et al. 2015). A couple of 
studies have discovered that the pricing of WGS has 
begun to reduce, whereas WES has not (Meienberg et al. 
2016). As a result, it is anticipated that WGS will soon be 
a diagnostic test that is widely accessible and that, in the 
long run, it will be more effective at finding harmful 
mutations than gene panels or WES. 

2.2. Whole Exome Sequencing 
WES uses NGS technologies like Illumina to 

sequence the genome’s protein-coding sections. Exons 
make up less than 2% of the human genome, according to 
initial sequencing and analysis, but they are responsible 
for 85% of the DNA changes that lead to highly penetrant 
genetic disorders (Winer et al. 2013; Wang et al. 2019). 
WES has been the most widely utilized standard 
sequencing technique in clinical applications because of 
its reduced cost and processing time as compared to 
WGS. For instance, WES has helped further understand 
the genetics of ALS, also known as amyotrophic lateral 
sclerosis, a disease marked by the decline of neurogenic 
function. The first genetic (Chia et al. 2018). The mutation 
SOD1 protein develops a lethal role independent of its 
normal enzyme activity, and SOD1 RNA expression in 
cerebrospinal fluid acts as an indication of disease 
intensity in ALS patients (Winer et al. 2013; Schoch and 
Miller 2017) 
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Table 1: DNA Sequencing methods used by NGS systems 

 
“NGS: next-generation sequencing; SMRT: Single-molecule real-time. 
A. Single read not consensus. 
B. Was later acquired by Life Technologies, now part of Thermo Fisher Scientific.” 
 
WES has identified seven new genes associated with ALS 
since 2014: MATR3, CHCHD10, TBK1, TUBA4A, NEK1, 
C21orf2, and CCNF (Smith et al. 2014). 
The cytoskeleton’s ability to generate microtubules is 
inhibited by mutated TUBA4A, suggesting that treatments 
that strengthen the cytoskeleton may stop or even reverse 
the progression of disease (Smith et al. 2014). Takayasu 
arteritis (TA) management and treatment have undergone 
historical modifications as a result of the identification of 
underlying genetic variables. The diagnosis rate in various 
clinical laboratories increased to 65.52% attributed to 
advances in sequencing technology (Wang et al. 2019; 
Stenton and Prokisch 2020). The overall diagnostic rate is 
still low, however, as a result of challenges in identifying 
harmful mutations that can be labeled as VUS (Variant of 
Unknown Significances) or exist in the non-coding area, 
evading WES detection. Meanwhile, utilizing WES data 
enables mitochondrial DNA (mt-DNA) examination in 
holistic level (Stenton and Prokisch 2020). However, an 
inconsistent discovery within one tissue type does not rule 
out the potential of mt-DNA variants in other tissues, as 
mt-DNA may vary between tissue types, due to variations 
in energy requirements. As a result, when employing WES 
to determine the molecular causes of neurogenetic 
illnesses, other genetic variables ought not be discounted 
too quickly. In essence, by integrating WES results with 
patient clinical data and, if necessary, with other genetic 
sequencing techniques, useful genetic information can be 
retrieved (Skinner et al. 2016). 

3. Applications of NGS in Cardiology 

3.1. General Applications of NGS in cardiological 
diseases 
 
The etiologies of the majority of CVDs include a genetic 
component. It is considered that a high percentage of 
patients have polygenic/multifactorial diseases, in which 
illnesses are brought on by two or more genetic errors in 
the same or different genes, as well as environmental 
factors. These cases are believed to be far more common 
than the exceedingly uncommon Mendelian 
Cardiovascular instances with completely monogenic 
dominant inheritance. In addition, common polymorphisms 
can alter the prognosis of the symptoms of a monogenic 
illness (Faita et al. 2012). Comprehensive genetic 
molecular diagnosis methods are needed since such 
diseases are so complex. Thanks to NGS, we can now 
evaluate a huge number of genes simultaneously, which 
will likely help us better understand the pathology of 
complex diseases like CVD. Additionally, It might be 
beneficial for locating rare mutations in small families. The 
most frequent CVDs in clinical practice are complex 
illnesses like CAD (Coronary Artery Disease) and stroke. 
which are caused by complex gene-gene and gene-
environment interactions (Faita et al. 2012; Hirschhorn 
and Daly 2005). Molecular DNA testing has recently been 
employed in clinical diagnostic settings, not only as a tool 
for research but also because it promises to give families 
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more tailored and intelligent counseling (Jongbloed et al. 
2011). 
 
3.2. Hereditary Cardiomyopathies 

Restrictive cardiomyopathy (RCM), hypertrophic 
cardiomyopathy (HCM), dilated cardiomyopathy (DCM), 
arrhythmogenic right-ventricular cardiomyopathy (ARVC)/ 
Unclassified cardiomyopathies with left ventricular 
noncompaction and arrhythmogenic ventricular 
cardiomyopathy (LVNC) are the most common 
morphological and functional phenotypes of 
cardiomyopathies based on changes in the structure and 
function of the heart muscle; each trait is a single rare 
mutation that accounts for the vast majority of familial 
cardiomyopathies (Elliott et al. 2008; Maron et al. 2006).  
The most prevalent inherited cardiomyopathies are HCM 
and DCM, which represent a diverse collection of illnesses 
mainly inherited through families (20% to 35%) caused by 
mutations in at least 30 genes (Dellefave-Castillo and 
McNally 2010; Kimura , 2011; Elliott et al. 2008). AARS2, 
MRPL3, and MRPL44 mutations in mitochondrial 
cardiomyopathies and the GATAD1 mutation in DCM are 
only a few of the uncommon genes that have been linked 
to cardiomyopathy thanks to the potent approach WES. 
Despite the limited resources, determining the responsible 
gene and the underlying mutation for cardiomyopathies 
has prognostic implications. For instance, several gene 
variations associated with cardiomyopathy have been 
associated with an early onset of the illness, a poor 
prognosis overall, or a high incidence of sudden cardiac 
death (Faita et al. 2012; Elliott et al. 2008; Maron et al. 
2006). Additionally, patients with HCM who have a genetic 
cause are more likely to have a mild phenotype (Ingles et 
al. 2013) than those who have several sarcomeric gene 
mutations, which result in a more severe phenotype and a 
bad prognosis (Olivotto et al. 2008; Ho et al. 2015).  
Common polymorphisms may change the HCM 
phenotype, according to the link between a mutation in the 
ACE gene, which codes for angiotensin-converting 
enzyme, and a faster progression of hypertrophy and a 
higher incidence of sudden cardiac death in HCM (Marian 
et al. 1993; Doolan et al. 2004). Due to a multitude of 
factors, including the vast range of reported mutation 
frequencies and the widely variable nature of clinical 
manifestations, the use of genetic information in medical 
therapy for hereditary cardiomyopathies has been 
restricted (Bos et al. 2009).  
The most effective strategy for research and the creation 
of new diagnostic tests seems to be targeted 
resequencing of “many causative genes” (Vecoli 2015). In 
recent years, NGS technologies have greatly improved 
our comprehension of the underlying genetic reasons. 
Although environmental factors including age, gender, and 
lifestyle may affect clinical symptoms, HCM, the most 
prevalent inherited heart disease, has been related to 20 
genes and roughly 1400 different mutations (Ho et al. 
2015). The majority of the causative mutations are 

missense variants, which result in structurally abnormal 
polypeptides that compromise conventional sarcomere 
function. About 80% of HCM cases are caused by 
mutations in the cardiac myosin-binding protein C (MYH7 
and MYBPC3) (Ho et al. 2015).  
In 2011, Meder et al. made history by being the first to 
screen patients for hereditary cardiomyopathy using a 
targeted NGS technique. Ten HCM and DCM patients had 
mutations identified using a 47-gene panel, and 27 
additional potentially harmful variants were also found 
(Meder et al. 2011). To detect cardiomyopathies "time and 
cost-efficiently," the author created a microarray based on 
target enrichment, followed by SOLiD NGS (Meder et al. 
2011). In relation to that, the clinical diagnosis of 
cardiomyopathies used the NGS approach (Soor et al. 
2009). A significant NGS study examined the coding, 
intronic, and regulatory regions of 41 cardiovascular 
genes in 223 unrelated HCM patients using massive 
parallel resequencing on the Illumina GAIIx (Taylor et al. 
2004).With titin excluded, 152 potentially harmful 
mutations in sarcomeric or related genes were present in 
64 percent of patients (89 novel). Uncommon non-
synonymous single-nucleotide polymorphisms increased 
in four sarcomeric genes (MYH7, MYBPC3, TNNI3, and 
TNNT2) (nsSNPs) when cases and controls were 
compared (Watkins et al. 2011), with 34% of patients 
possibly having changes in desmosomal and ion channel 
proteins. The discovery of a truncating mutation in the 
TTN gene as the main cause of DCM is another 
noteworthy instance of how NGS has assisted in 
illuminating the genomic spectrum of cardiomyopathies 
(Gerull et al. 2002). The big muscle filament titin-encoding 
gene TTN has been linked to family DCM since 1999 (Siu 
et al. 1999; Gerull et al. 2002), but because of its vast size 
(363 exons), standard Sanger sequencing has had 
difficulty analyzing this gene. As a result, the magnitude of 
this causation has been miscalculated for a long time. In 
order to analyze the deleterious modifications for co-
segregation in the studied families, the full coding TTN 
sequence was evaluated in patients with DCM, those with 
HCM, and the control subjects, primarily utilizing an NGS 
technique (Herman et al. 2012).  
About 18% of sporadic idiopathic DCM cases and 25% of 
familial DCM cases had TTN truncating mutations. The 
researchers discovered that including TTN sequencing 
analysis in genetic testing may increase its sensitivity by 
about 50%, enabling earlier identification and treatment of 
DCM patients to halt the progression of the disease 
(Herman et al. 2012). This finding was supported in 2014 
by another investigation (Pugh et al. 2014). One of the 
largest studies to date on the use of broad genome panels 
in cardiomyopathy had 766 DCM patients from the US 
who received genetic testing at a molecular diagnostics 
lab over a 5-year period (Hershberger et al. 2018). 
Starting with a 5-gene Sanger panel and moving up to an 
NGS 46-gene panel, the patients were examined utilizing 
gene panels with previously identified involvement in DCM 
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that ranged in size from 5 to 46 genes.  
By increasing the size of gene panels, from 7.7-10% to 
27-37%, the clinical sensitivity for DCM diagnosis more 
than tripled, mostly due to the TTN gene's inclusion. 
However, this improvement in sensitivity was countered by 
a rise in the proportion of patients whose test results were 
unclear increased from 4.6 to 6.5% to 51-61% 
(Hershberger et al. 2018). A single exon resolution NGS-
based copy number analysis for up to 46 cardiomyopathy 
genes was performed in a large study with over 1400 
patients who had cardiomyopathies like HCM, DCM, 
ARVC, RCM, and LVNC (Ceyhan-Birsoy et al. 2016). 
These researchers came to the conclusion that the 
improved advantage of exon level deletion/duplication 
analysis had not been cost-effective in routine diagnostic 
testing while finding clinically relevant deletions and 
duplications in less than 1% of individuals (Ceyhan-Birsoy 
et al. 2016). 

Recent studies with fewer HCM patients confirmed the 
targeted NGS methodology's value for clinical objectives 
and the necessity of choosing the right patient for more 
efficient molecular genetic testing performance (Rubattu et 
al. 2016; Ackerman et al. 2011). The uncommon 
hereditary cardiomyopathy ARVC, which causes sudden 
death in children and athletes, seldom manifests in 
childhood and is challenging to diagnose at an early stage 
(Gandjbakhch et al. 2018). This heart-muscle condition 
can be hard to identify from DCM in its severe stages 
(Medeiros-Domingo et al. 2017). In a study, 14 ARVC 
cases were subjected to targeted sequencing using an 
"Illumina HighSeq 2000," with an emphasis on 96 known 
cardiomyopathy and channelopathy genes for filtering. 
According to the 2010 task force criteria, patients with a 
"possible" phenotype had changes in DCM-related genes, 
while 75% of persons with a confirmed diagnosis of ARVC 
had desmosomal mutations. Because they enable 
simultaneous molecular analysis of all disease-related 
genes, NGS-based panels are especially attractive for the 
diagnosis of ARVC and are suitable for better defining the 
phenotype (Gandjbakhch et al. 2018). Recent research 
using an NGS approach, and a panel of many genes 
linked to cardiomyopathy and arrhythmias has 
successfully discovered the variety of genetic causes in 
RCM patients (Kostareva et al. 2016). 

3.3. Precision Medicine for Hypertrophic 
Cardiomyopathy 
HCM patients who undergo genetic testing may give their 
families a diagnostic reference. A positive DNA test would 
enable systematic analysis of an HCM-affected proband's 
relatives to identify those who are mutation positive 
regardless of their current clinical phenotypic 
manifestation, leading to early identification and proper 
selection of relatives for ongoing medical monitoring while 
exempting those who are mutation negative/phenotype 
negative from standard cardiac exams and 
echocardiograms. General or specific (MYBPC3, MYH7, 

TNNI3, TNNT2, TPM1) HCM genetic testing is useful for 
any patient in whom a cardiologist has established a 
medical assessment of HCM based on an examination of 
the patient's clinical history, family history, and 
electrocardiographic/echocardiographic phenotype, and 
mutation-specific genetic testing is advised for family 
members and individuals with known genetic mutations 
(Ackerman et al. 2011). 

4. Applications of NGS in Pediatrics 
The utilization of next-generation sequencing in the 

pediatric profession is advancing, which is making it 
possible to identify the causes of many more genetic 
illnesses and to create new, more effective treatments for 
those diseases. This is exemplified in disorders like 
pediatric brain tumors, where NGS has developed a way 
to quickly identify mutations and their hosts (Shirian et al. 
2019). Diffuse Gliomas (DGs), for example, are a common 
central nervous system malignancy that typically affect the 
cerebral hemisphere (Carter et al. 2017). A more 
inexpensive and effective method of identifying these low-
grade mutations for therapy is the NGS-based 1p/19q co-
deletion status procedure (Dubbink et al. 2016). TP53, 
ATRX, CIC, IDH1, IDH2, FUBP1, PI3KC, EGFR, H3F3A, 
TERT, BRAF, PTEN, and NOTCH gene mutations as well 
as copy number variations of chromosomes 1p, 19q, 10q, 
and 7 were all searched for using targeted NGS to detect 
DG (Johnson et al. 2017). 

Gliomas with the histone H3 K27M mutation, which 
were once classified as invasive brainstem or pontine 
gliomas, are now referred to as "diffuse midline glioma, H3 
K27M-mutation" in the most recent WHO classification 
(Kallappagoudar et al. 2015). Through WES, the Histone 
“H3 K27M” gene mutation was discovered to be a driver 
mutation in 2014 (Khuong Quang et al. 2012; Wu et al. 
2014; Schwartzentruber et al. 2012). Tumors of similar 
classification are believed to be deadlier without the H3 
K27M. When using current medicines, the two-year 
survival rate is typically less than 10% (Shirian et al. 
2019). Genetic sequencing is needed to identify pilocytic 
astrocytomas (PAs), WHO grade I CNS tumors that are 
challenging to diagnose based on anaplastic morphology 
(Porkholm et al. 2018). Sanger sequencing methods have 
shown that almost all PA cases are one-pathway 
diseases, only mutating the MAPK pathway through a 
single alteration (Johnson et al. 2017). NGS-based 
pediatric analysis has identified KIAA1549:BRAF fusion 
variants, FAM131B:BRAF fusion, four BRAFV600E 
mutations, and one BRAF599T mutation in pediatric 
astrocytomas (Johnson et al. 2017). This fusion probably 
functions as a tumor driver by turning on the MAPK 
signaling pathway (Johnson et al. 2017). 
      MB is the most common type of CNS embryonal tumor 
and mainly affects children’s cerebellums, though they 
could form in the dorsal brainstem (Pietsch and Haberler 
2016). In accordance with the known inheritable disorders 
and physical features, it is divided into two classification 
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systems: genetically determined and morphologically 
determined categorization. The genetic MB classification 
is made up of four groups: group 3, group 4, Sonic 
Hedgehog (SHH)-activated, and WNT-activated. These 
MBs have had better prognosis with the introduction of 
NGS (Zhukova et al. 2013; Cavalli et al. 2017; Northcott et 
al. 2017), although it is still required to look at the mutation 
of multiple genes and chromosome duplication number 
variation in order to genetically categorize MBs. The 
inheritable groups of MB can now be further differentiated, 
according to a 2017 study. In other words, it is classified 
into four groups—WNT to to, SHH to to, group 3 to to, and 
group 4 to to—that more accurately reflect its prognostic 
and clinical characteristics (Northcott et al. 2017; Jennings 
et al. 2017). 

Genome-wide research techniques like whole exome 
sequencing (WES) and whole genome sequencing (WGS) 
have made tremendous progress in our understanding of 
the molecular characteristics of brain malignancies (Myers 
et al. 2015). However, for the everyday clinical practice of 
brain tumor diagnosis and therapy, tailored NGS panels 
made up of a small number of genes are required. For the 
clinical NGS test of brain tumors, it is important to 
consider the gene contents, target enrichment system, 
type of tissues such as “fresh frozen (FF) or formalin-fixed 
paraffin-embedded (FFPE) tissues” and “pan-cancer panel 
or organ-specific panel differences” (Shirian et al. In 
Press).  

Pan-cancer, brain tumor-specific, and glioma-specific 
panels are the three different types of panels. Pan-cancer 
panels often contain more than 300 key oncogenes, 
excrescence suppressor genes, and druggable genes that 
are often changed in different types of malignancies. 
Although pan-cancer panels have superior performance in 
copy number modifications because of the large target 
region (CNA), they take longer and are costlier. 
Additionally, pan-cancer panels do not cover genes that 
are only altered in a specific form of cancer with a limited 
frequency, such as HIST1H3B or HIST1H3C. Organ-
specific panels, although cheaper and have more limited 
gene coverage, contain genes with unusual mutation rates 
that are particular to various cancer types. Clinical 
applications of the organ-specific panel are constrained in 
clinical trials and CNA analysis (Carter et al. 2017; 
Porkholm et al. 2018; Shirian et al. In Press) 

5. Applications of NGS in Neurology 

5.1.Epilepsy 
Epilepsy affects over 65 million people worldwide, with 

genetic factors accounting for 70-80% of cases (Demarest 
et al. 2018). Whole-exome sequencing (WES) or targeted 
panels can provide a genetic diagnosis for up to 30% of 
early-onset epileptic patients and approximately 25% of 
patients with de novo mutations (Dunn et al. 2018). 
Complex genotype-phenotype correlations, on the other 
hand, make epilepsy etiology and treatment difficult 

(Hardies et al. 2016; Jiang et al. 2020). The fact that 
favorable diagnostic results are closely correlated with age 
is an important discovery. The diagnostic yield for early-
onset epilepsy, commonly known as childhood epilepsy, is 
greater than that for adult-onset epilepsy (Stödberg et al. 
2020; Amadori et al. 2020), suggesting that the molecular 
pathways are different. Several voltage-gated ion channel 
genes have been linked to "developmental epileptic 
encephalopathies (DEE)" using next-generation 
sequencing technology (Masnada et al. 2017; Ambrosino 
et al. 2020). A patient with "an uncommon sort of 
hyperkinetic focal motor seizure in EE" was described in a 
recent study. This patient had a newly identified KCNT2 
mutation that altered the protein's putative pore-forming 
region (Ambrosino et al. 2020). 

A class of diseases known as DEE that are 
characterized by monogenic inheritance and 
developmental abnormalities are mainly benefited by the 
use of NGS (Masnada et al. 2017). The voltage-gated K+ 
channel KV1.2 is encoded by the DEE-associated gene 
KCNA2 (Masnada et al. 2017). The first patient with 
KCNA2 mosaicism was described in a paper that was 
published in 2020. This patient had two distinct mosaic 
mutant alleles in KCNA2 at the same nucleotide: 
"c.1225A>T and c.1225A>C" (Ambrosino et al. 2020). 
Researchers have suggested that genetic abnormalities 
may occasionally be the cause for EE as the etiology of 
the majority of EE is unknown. Several genes linked to EE 
have also been discovered (Masnada et al. 2017). This 
newly discovered variant is similar to p.P302L, another de 
novo GABRG2 variant discovered in a Dravet syndrome 
patient (Masnada et al. 2017). The M2 transmembrane 
segment is affected by both variants. Furthermore, 
p.P302L has been shown to impair GABAA gating, cause 
hyper-excitability, desensitization of GABAA receptors, 
and, ultimately, the epilepsy phenotype (Masnada et al. 
2017; Ambrosino et al. 2020). In a study of 205 cases of 
DEE with unknown causes, three people with refractory 
epilepsy and abnormal MRI results were found to have 
four distinct SZT2 mutations. In a study of 205 cases of 
DEE with unknown causes, three people with refractory 
epilepsy and abnormal MRI results were found to have 
four distinct SZT2 mutations (Chan et al. 2020).  
In two unrelated individuals, Japanese researchers 
discovered a de novo mutation in NUS1 (c.691+1C>A). 
Both individuals developed scoliosis, in contrast to other 
NUS1 mutations linked to DEE, ataxia, intellectual 
impairment, and developmental delays. Because of this, 
there is significant evidence from this work that NUS1 
loss-of-function mutations, which cause the removal of the 
cis-PTase domain in the NgBR C-terminus, may be 
associated to scoliosis and represent a new phenotype 
(Bonzanni et al. 2018). These discoveries increase the 
NUS1 gene’s phenotypic spectrum. 
Seizures are the most common symptom of hereditary 
epilepsy. Numerous genetic  explanations for hereditary 
epilepsy have been proposed, but the pathogenic genes in 
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the vast majority of cases remain unknown. The SCN9A 
gene, which has been linked to febrile seizures and 
hereditary epilepsy, encodes the Nav1.7 sodium channel 
protein. In a case study of a family with a male proband 
who had genetic epilepsy, a gene panel assay was used 
(Ittiwut et al. 2021). In a Malaysian-Chinese family with a 
range of epilepsy symptoms, WES revealed a novel 
nonsynonymous mutation in SCN1A (c.5753C>T, 
p.S1918F), and it was present in all family members with 
genetic generalized epilepsy (Wu et al. 2020). A de novo 
variant (c.467A>T) in ATP6V0C, a conserved termination 
codon mutation, was discovered using next-generation 
sequencing in a patient with severe epilepsy and 
intellectual disability (Ittiwut et al. 2021). A study suggests 
that NEXMIF with X-inactivation patterns may have 
contributed to minor intellectual impairment (Wu et al. 
2020).  
        The atypical etiology of a few neurological diseases 
that are accompanied by epileptic seizures has been 
successfully identified using NGS. For instance, cerebral 
folate deficiency (CFD), a neuropsychiatric disorder, is 
characterized by low levels of 5-methyltetrahydrofolate in 
the cerebral spinal fluid (MTHF). The majority of patients 
with FOLR1 mutations, a rare cause of CFD, have clinical 
characteristics comparable to other more common 
causes, such as frequent epileptic seizures (Ramaekers et 
al. 2013; Steinfeld et al. 2009). A study linked the 
observed myoclonic seizures to a novel variant in FOLR1 
(c.197 G>A) identified by WES (Cario et al. 2009). 
 
Table 2: A sample of research studies that employ 
next-generation sequencing (NGS) as a strategy to 
find uncommon variants are shown in the table below 
 

 
5.2. Precision Medicine for Epilepsy 
Many harmful situations, such as unnecessary or 
worsening treatments, can be avoided with early 
diagnosis. Paroxysmal non-epileptic episodes occur in 
20% to 30% of patients undergoing EEG testing for 
intractable epilepsy (Kotagal et al. 2002; Boesebeck et al. 
2010; Chaves and Sander , 2005) and differentiating 
these events from epileptic seizures can be difficult. In one 

study, for example, anti-seizure medications were given to 
14% of patients admitted to the intensive care unit after 
receiving an incorrect diagnosis of seizures (Boesebeck et 
al. 2010). 

Certain anti-seizure drugs have been associated with 
poorer long-term epilepsy and cognitive outcomes, as well 
as increased seizure frequency and duration, depending 
on the epileptic syndrome (Parker et al. 1998; Pawluski et 
al. 2018; Guerrini et al. 1998; de Lange et al. 2018). When 
given unsuccessful carbamazepine medication for two 
weeks before getting effective treatment for six weeks, a 
group of mice in a research using a mouse model of 
absence epilepsy experienced more seizures at the end of 
the eight-week period than a control group that simply got 
saline (Hauser et al. 2018). 

Similarly, lamotrigine treatment was linked to an 
increase in seizure frequency and duration in people with 
Dravet syndrome (Hauser et al. 1991). Lamotrigine and 
other sodium channel blockers may have a negative 
impact on Dravet syndrome patients’ cognitive outcomes 
in the first five years after their seizures begin (Mohanraj 
and Brodie , 2013). To the best of our knowledge, these 
two investigations (Hauser et al. 1991; Mohanraj and 
Brodie 2013) are among the first to reveal a detrimental 
disease-modifying impact linked to inadequate epilepsy 
therapy.  

There should be no delay in making the epilepsy 
diagnosis or starting the right course of therapy. In order 
to meet the clinical criteria for epilepsy in 1991, two 
unprovoked seizures had to take place within a 24-hour 
period (Fisher et al. 2014). This criteria was revised in 
2014 to take into consideration how many seizures might 
affect a patient's prognosis (Kim et al. 2006).  
In fact, risk factors for seizure recurrence have been found 
as epilepsy duration and number of seizures before 
therapy (Hauser et al. 1998; O’Callaghan et al. 2011; 
Auvin et al. 2012; Eisermann et al. 2003). One research 
found that individuals who had previously had two 
symptomatic seizures were more likely to develop another 
seizure than those who had only had one (Bok et al. 
2012).  
      The new clinical definition of epilepsy is based on the 
1991 definition but adds two conditions: "one unprovoked 
(or reflex) seizure and a probability of further seizures 
comparable to the general recurrence risk (at least 60%) 
after two unprovoked seizures occurring within the next 
ten years" and "diagnosis of an epilepsy syndrome." If 
either of these conditions is met, an individual is 
diagnosed with epilepsy. Delayed treatment has been 
linked to poorer patient in a variety of epilepsies and 
epilepsy syndromes, including epileptic spasms 
(O’Callaghan et al. 2011; Eisermann et al. 2003), localized 
epilepsies (Malmgren and Edelvik , 2017; Skirrow et al. 
2019), pyridoxine-responsive epilepsy (Bok et al. 2012; Al 
Teneiji et al. 2017), autoimmune epilepsy (not specified), 
and epileptic spasm (Delalande et al. 2007). 
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CONCLUSIONS 
The most accurate method of identifying genetic diseases 
is through identifying a causative mutation. However, 
whether the disease is highly genetically diverse or the 
causative gene(s) has not been explored, this 
conventional strategy is inadequate for detecting many 
single-gene disorders. Sanger sequencing may be able to 
identify the causal mutation in diseases brought on by a 
limited number of gene mutations. NGS has shown that 
re-sequencing the patient’s full exome (or genome) can be 
an effective method for studying Mendelian diseases.  
Additionally, the implementation of these systems to 
complex disorders such as CAD and other CVDs may 
result in the examination of the genetic basis of these 
illnesses. Despite the fact that GWAS have considerably 
enhanced our knowledge of the genetic etiology of 
complicated CVDs, genetic variations account for only a 
minor fraction of heritable CVD risk. In light of this, the 
question of whether rare mutations, or variants with an 
allelic frequency of less than 1% that are not reflected on 
standard SNP arrays, can account for at least some of the 
reported missing heritability has been raised. By applying 
cutting-edge technologies like NGS, it is possible to detect 
structural and uncommon variants, as well as the 
difficulties posed by various types of variation and 
phenotypic. WGS is now a practical way for acquiring 
global genomic data thanks to NGS technologies.  
Cardiovascular genetics currently uses a number of NGS 
systems that have similar fundamental processing steps 
but differ in certain technical facets, enabling us to weigh 
the benefits and drawbacks of each platform.  
Recently, it has been demonstrated that NGS has a 
tremendous potential for finding novel causal variants in a 
variety of Mendelian variations. Another area where NGS 
is projected to play a rising role is the research of 
multifactorial features like CVDs, where risk assessment 
through the discovery and identification of causative 
genes remains a significant barrier to advancement in 
treatment and prevention. Although their utility for regular 
genetic test may be constrained by technical concerns, 
the fundamental limitation of WGS and WES applications 
for diagnosis is the analysis of genetic data 
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