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Phenanthrene (Phe) is a major contaminant of the aquatic ecosystem by releasing of wastewater from the oil industry into 
common water sources. The current study aims to clarify the expected action of phenanthrene on tissue antioxidant 
enzymes, hepatic and kidney functions of bream fish. Eighty alive adult male sea bream fish were used and allocated into 
4 groups;control, the low-phenanthrene dose (10 ng/ml water), the high-phenanthrene dose (50 ng/ml water) and vehicle 
control group in 4 glass aquaria. The time of exposure was 15 days while maintaining the same experimental conditions. 
Results revealed that in the high-dose group and at day 15 of exposure , the hepatic and gill levels of Glutathione (GSH) , 
Glutathione-s-transferase (GST), and catalase (CAT) were significantly increased .In addition , hepatic Glutathione 
peroxidase (GPx ) and Malondialdehyde (MDA) were also increased significantly .Phenanthrene at low dose significantly 
elevates activities of transaminases (ALT & AST) at 10  and 15 days of exposure while, they were significantly elevated at 
7 ,10 and 15 days at a high dose group , however no changes in the levels of urea and creatinine were recorded all over 
the experimental time. Results obtained confirmed that Phe caused oxidative stress and raised concerns about 
hepatotoxicity in bream fish. The lower vulnerability of the gills to oxidative damage (compared to the liver) appears to be 
related to the higher basal levels of antioxidants .Conclusively, this suggests a high ecological risk of phenanthrene to 
aquatic organisms. 
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INTRODUCTION 
Polycyclic aromatic hydrocarbons (PAHs) are a widely 
distributed group of pollutants that have drawn attention 

for their toxicity(Ranjbaret al. 2020; Liet al. 2020). Many 

PAHs are released into the aquatic environment 
from accidental oil spills, drilling leaks, and industrial 
wastewater and can affect aquatic life (Naudinet al.2019) 
      In recent decades, many researches showed higher 
rate of malformations, lesions, tumors and other toxic 
effects as a consequences for PAHs toxicity (Sunet 
al.2019). Diseasesyndromesincluding heartfailure, edem
a and spinal abnormalities have been observed in 
zebrafish embryos after exposure to a mixture of PAHs 
(Incardona et al.2004). PAH-contaminated sediments 
resulted in liver injury in mummichogs 
(Fundulusheteroclitus) (Lourenço et 
al.2021).Incidence of hepatic cancer in brown bull 
(Ameiurus nebulosus) was also used as a signs of 
PAH exposure (Baumann et al.1996) . 
      The sea bream, Sparus aurata,Lis a 
bottom dweller, usually living solitary or in small mobile 

groups. It is one of the predominant sparid fishes 
and is widespread throughout the Mediterranean Sea 
and on the east coast of the Atlantic, representing an 
important fishery resource on both coasts. This species 
of fish has been known for many years, mainly as 
a bycatch (Aydin,2018). 
     The oxidative enzymes are used to detect the 
harmfull effects of xenobiotics on organisms ( González-
Fernández et al.2016 ; Lam,2004) .Crude oil significantly 
decreased SOD content in sea bass (Danion et al.2009)  
and elevates the lipid peroxidation products in the livers 
of Lateolabraxjaponicus (Lin et al.2005) .At gene level, 
many studies  have been performed to clarify the PAH-
induced oxidative harms in zebrafish and other aquatic 
species (Wincent et al.2015 ;Dasgupta et al.2014) 
).However, the impact of PAHs on these oxidative 
parameters in bream have not been reported. 
Metabolites are the most important biomarkers, which 
can explaine the metabolic changes in response to the 
Surrounding variables (Goodale et al.2014 ; 
Jayasundara et al.2015) .Many researchers have 
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studied the effects of PAHs on zebrafish metabolism and 
demonstrated toxic effects on protein production,heart 
and mitochondrial functions(Nicholson et al.2012; 
Johnson and Luís et al.2020) . 
      Plasma is a pole of metabolites suitable for studying 
the biological alterations as a reflection to pollutants18.In 
this study, the effects of phenanthrene on seabream 
were designed to determine changes in hepatic and gill's 
antioxidant parameters,liver and renal function 
indices.These results may help understand PAHs' 
impact on aquatic ecosystems. 
 
MATERIALS AND METHODS 

Phenanthrene and  experimental fish groups 
Phenanthrene crystals, sublimed grade, (purity ≥ 99.5%) 
,695114 - Sigma - Aldrich was purchased from 
Agitech Company /Jeddah. A stock alcoholic phe 
solution of 1 mg/ml was prepared by dissolving in 
ethanol and stored in a dark bottle at 4°C.To prepare the 
desired Phe concentration, the stock solution was 
diluted with filtered water .The added volume of ethanol 
was equal for all groups with final concentration less 
than <0.1%. 
      A total of 80 freshly alive adult male gilthead 
seabream fish of local seabream fish that were randomly 
collected from the central fish market, Al-Kakiyahdistrict, 
Makkah Al-Mukarramah Governorate (Latitude 
21.422487, Longitude 39.826206) .Their lengths were 25 
– 35 cm and weight were 200 - 250 grams. The sex and 
maturity were determined via observation of motile 
sperms in drop of milt released after multiple stripping. 
      At the laboratory, fish were maintained into glass 
stock tank (100 cm x 55 cm x 50 cm) filled with 120 liters 
of aerated filtered sea water and kept at 27 ± 1 0C Under 
the influence of light and dark for 12 hours alternately 
and fed twice daily with 3% body weight of commercial 
dry pellets .Water parameters including temperature, pH 
and salinity were adjusted, at 27±1oC, 7.1±0.5 and, 
41±0.5%, respectively (Elieet al.2015). The fish 
were kept in laboratory conditions for two weeks before 
use for the experiments (Sreekumaret al.2009). Water in 
the tank was replaced each 3 days while maintaining the 
same experimental conditions. Experiments were 
performed according to the guidelines of the National 
Institutes of Health (NiH) for the use and care 
of animals, and the study protocol was performed 
according to the guidelines of Umm - Al Qura University 
for the use of laboratory animals. Efforts were made 
to reduce the number and suffering of fish used. Fish 
were equally grouped into 4 equal experimental groups, 
20 males / group , maintained in 60 L tank (75x35x30) 
contained aerated filtered sea water with sand 
substratum and designated as control , low-
phenanthrene dose , high-phenanthrene dose and 
vehicle groups. Water temperature, PH and salinity were 
adjusted at 27± 1 0C , 7.1 ± 0.5 and 41±0.5 ,respectively. 

Fish of all groups were left for one week in their 
corresponding tank without treatment for acclimatization. 
No mortality was observed during the experiments. 

Treatment 
Fish of control group were left without treatment, the low-
phenanthrene dose group was treated with 
phenanthrene alcoholic solution in adose of 10 ng/ml, 
the high-phenanthrene dose group was treated with 
phenanthrene alcoholic solution in adose of 50 ng/ml 
and the fishes of the 4th group were treated with less 
than 1% ethylealcohole solution and served as vehicle 
control group. After the period of acclimatization, 
treatment for each fish group was started. The time of 
exposure was 15 days and the water in each tank was 
replaced each 3 days while maintaining the same 
experimental conditions. 

Serum biochemical markers 
Five fish were randomly selected from each tank 
on days 0, 7, 10 and 15 during the exposure period. 
Using a 3 cc disposable syringe and a 21-gauge needle, 
blood samples from the tail vein were collected and 
transferred to the anticoagulant-free Eppendorf for 
collection of serum for estimation of blood urea, 
creatinine and transaminases (ALT&AST) 
spectrophotometerically (Lab-Med Co.,American Inc., 
USA) according to the manufacturer's guides. After 
blood sampling was complete, tissue samples (liver and 
gills) were taken from 4 fish/per group, followed by 
rinsing with buffered saline to remove excess blood, then 
weighed and stored at -80° C in liquid nitrogen.  

Biomarkers for tissue antioxidants and lipid 
peroxidation 
The frozen liver and gills homogenates were prepared in 
10 volumes of 0.1 M Tris - EDTA buffer  (pH 7.4) and 30 
minutes centrifugation at 1000xg at4 °C. An 
aliquot of supernatant has been used For further 
colorimeteric assessments. GSH was determined based 
on the reductive breakdown of 2,5'-Hithiobis acid groups 
(2-nitrobenzoic acid) (DTNB) and sulfhydryl  
(-SH) to produce a yellow color. Reduced chromophore 
is directly proportional to the concentration of GSH. 
Absorbance measured at 412 nm. GST activity 
was measured according to the method of Habiget 
al.1974). Depending on measuring the conjugation of 1-
chloro-2,4-dinitrobenzene (CDNB) and reduced 
glutathione at 340 nm . GPx activity was determined 
colorimetrically through indirect measure of GPx activity. 
An aliquot of tissue homogenate was added to the 
solution containing GSH, GR, and NADPH. The 
enzymatic reaction was initiated by tert-
butyl hydroperoxide and measured at 340 nm.The 
activity of CAT was measured according to Aebi(1984). 
It reacts with H2O2 and In the presence of peroxidase, 
residual H2O2 reacts with 3,5-dichloro-2-
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hydroxybenzenesulfonic acid and 4-aminophenazone to 
form a chromophore whose color density is 
proportionate inversily to the content of CAT in 
the sample . Absorbance was measured at 510 nm.Lipid 
peroxidation was measured as described by Ohkawaet 
al.(1979). Thiobarbituric acid reacts with MDA in acidic 
medium / 95°C / 30 min forming TBA-reactive 
product. The product absorbance was measured at 534 
nm. 

Statistical Analysis 
Data were expressed as overall mean ± SE for all 
parameters and analyzed using analysis of variance 
(ANOVA) tests. All statistical analyzes were performed  
using SPSS software (v.15.0). Results were significant 
at P≤ 0.05 and highly significant at P ≤ 0.01. 
 
RESULTS 

The current results clarify the toxic impact of 
phenanthrene exposure (10 ng/mL and 50 ng/ml) on 
liver and kidney functions, hepatic and renal tissue's 
contents of antioxidative enzymes and (MDA) formation 
in adult male sea bream fish. 

Hepatic and Renal Parameters 
        Data revealed that the 10ng/ml phenanthrene 

administration significantly increased serum AST and 
ALT levels on days 10 and 15 of the exposure period 
(p<0.05) comparing to control values .They were 
increased significantly on days 7, 10 and 15 of 
Phenanthrene exposure at a dose of 50 ng/ml but 
had no effect on serum urea and creatinine levels 
throughout the trial period (Table 1). 
 

Tissues antioxidants and lipid peroxidation 
parametersHepatic Antioxidants and lipid 
peroxidation levels 

Table 2 illustrates the hepatic content of antioxidants 
and lipid peroxidation level in adult male seabream fish 
exposed for different doses of phenanthrene.Results 
revealed no significant alterations in hepatic GSH 
contents after 7 days of exposure among all 
experimental groups (p>0.05) ; meanwhile, they were 
significantly (p<0.05) increased after phenanthrene  
exposure at 10 and 15 days for both 
phenanthrenedoses.No significant changes was 
recorded in the activity of hepatic GST enzyme on 
exposure to low phenanthrene dose while,it was 
significantly (p<0.05) increased on exposure to higher 
phenanthrene dose (50 ng/ml)  at 15 days of exposure. 

Gills Antioxidants and lipid peroxidation levels 
Table 3 shows the gill's content of antioxidants and 

lipid peroxidation level in adult male seabream fish 
exposed for different doses of phenanthrene. Data 
revealed that no significant changes in GSH,  GST and 
CAT levels were recorded in fish subjected to low 
concentration of phenanthrene (10ng/ml) while, they 
were significantly increased in fish subjected to higher 
concentration  of phenanthrene (50ng/ml) at day 15 of 
exposure as compared  to controls (p>0.05). However, 
no significant (p>0.05) changes in GPx activity and MDA 
level were recorded in all experimental fish groups with 
different doses of phenanthrene and at different times of 
exposure. 

 

Table 1: Liver and kidney parameters (AST, ALT, urea and creatinine) in adult male seabream fish exposed to 
phenanthrene for 15 days.  

Parameters Group 
Exposure Time /Day 

0 7 10 15 

AST 
(U/L) 

Control 6.60 ± 1.05 7.00 ± 1.05a 7.90± 1.11a 8.00± 0.90a 

Phenanthrene (10 ng/ml) 7.50± 1.00 7.50± 1.00a 11.20± 1.13b 15.30± 1.09b 

Phenanthrene (50 ng/ml) 6.88± 1.10 13.40 ± 1.05b 16.30± 1.15c 19.90± 1.08c 

Vehicle (Alcohole) Control 7.10± 1.30 6.00 ± 1.10a 7.80± 1.18a 6.99± 0.95a 

ALT 
(U/L) 

Control 13.00 ± 2.20 14.00 ± 3.00a 13.90± 3.20a 14.70± 4.02a 

Phenanthrene (10 ng/ml) 13.80 ± 2.80 13.80 ± 2.80a 17.90± 2.80b 20.20± 4.01b 

Phenanthrene (50 ng/ml) 12.40 ± 3.10 19.50± 3.20b 22.50± 4.02c 25.20± 2.20c 

Vehicle (Alcohole) Control 14.00 ± 2.70 13.00 ± 2.90a 14.10± 3.09a 14.66± 2.80a 

UREA 
(mg/dl) 

Control 6.90 ±1.02 6.90 ±1.02 7.90 ±1.02 8.10 ±1.02 

Phenanthrene (10 ng/ml) 6.88±1.05 6.88±1.05 7.88±1.05 7.88±1.05 

Phenanthrene (50 ng/ml) 7.70±1.12 7.70±1.12 8.70±1.12 8.20±1.12 

Vehicle (Alcohole) Control 7.50±1.10 7.50±1.10 8.50±1.10 8.70±1.10 

Creatinine 
(mg/dl) 

Control 0.32 ± 0.11 0.34 ± 0.11 0.36 ± 0.13 0.35 ± 0.12 

Phenanthrene (10 ng/ml) 0.31±0.12 0.36±0.12 0.39±0.11 0.37±0.11 

Phenanthrene (50 ng/ml) 0.32±0.14 0.38±0.14 0.39±0.11 040±0.13 

Vehicle (Alcohole) Control 0.35± 0.12 0.40± 0.12 0.33± 0.11 042± 0.11 

Data are Mean ± SE, values within the same column of the same parameter carrying different letters are significantly 
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different from each other (p<0.05). (ALT): Alanine transaminase enzyme ,(AST) : Aspartate transaminase enzyme 

Table 2: Liver oxidative enzymes and Malondialdehyde level in adult male Seabream fish groups exposed to 
phenanthrene for 15 days. 

Organ Group 
Exposure Time /Day 

0 7 10 15 

Reduced Glutathione level (GSH) (mmol/g wet tissue) 

Liver 

Control 0.78 ± 0.09 0.85 ± 0.07 0.76 ± 0.08a 0.74 ± 0.06a 

Phenanthrene (10 ng/ml) 0.73 ± 0.06 0.82 ± 0.11 0.90 ± 0.09b 0.98 ± 0.07b 

Phenanthrene (50 ng/ml) 0.79 ± 0.11 0.86 ± 0.09 0.96 ± 0.09b 1.12 ± 0.09b 

Vehicle (Alcohole) Control 0.76 ± 0.14 0.87 ± 0.11 0.75 ± 0.05a 0.69 ± 0.08a 

Glutathione-s-tranferase activity (GST) (U/g wet tissue) 

Liver 

Control 0.29 ±0.08 0.25 ±0.06 0.28 ±0.09 0.26 ±0.08a 

Phenanthrene (10 ng/ml) 0.27 ±0.03 0.27 ±0.06 0.26 ±0.09 0.25 ±0.08a 

Phenanthrene (50 ng/ml) 0.31 ±0.05 0.29 ±0.06 0.29±0.09 0.40 ±0.09b 

Vehicle (Alcohole) Control 0.25 ±0.07 0.26 ±0.09 0.27 ±0.08 0.22 ±0.09a 

Glutathione Peroxidase activity (GPx) ( U/g wet tissue) 

Liver 

Control 60.30±8.30 59.27±7.20 61.40 ±5.29 58.30 ±4.29a 

Phenanthrene (10 ng/ml) 58.30±9.10 62.30±8.30 60.30±7.50 60.23 ±5.44a 

Phenanthrene (50 ng/ml) 62.30±6.90 60.30±8.80 59.30±9.00 40.90 ±5.11b 

Vehicle (Alcohole) Control 58.30±8.49 57.27±9.82 56.38±6.29 61.38 ±6.20a 

Catalase activity (CAT) ( U/g wet tissue) 

Liver 

Control 4.30 ± 0.20 5.30 ± 0.30 4.40 ± 0.13 5.20 ± 0.10a 

Phenanthrene (10 ng/ml) 3.90 ± 0.30 4.30 ± 0.28 5.30 ± 0.60 6.10 ± 0.13a 

Phenanthrene (50 ng/ml) 5.10 ± 0.55 5.10 ± 0.18 5.12 ± 0.20 11.25 ± 0.18b 

Vehicle (Alcohole) Control 4.40 ± 0.22 5.25 ± 0.35 4.90 ± 0.13 5.10 ± 0.13a 

Malondialdehyde (MDA) levels 

Liver 

Control 19.82 ± 3.00 21.66 ± 4.04 20.03 ±1.09 19.03 ±1.30a 

Phenanthrene (10 ng/ml) 20.82 ± 3.05 19.82 ± 3.05 21.82 ±4.10 17.10 ±1.40a 

Phenanthrene (50 ng/ml) 17.82 ± 4.05 20.82 ± 2.90 20.82 ± 3.05 27.06 ±1.45b 

Vehicle (Alcohole) Control 18.82 ± 4.20 19.66 ± 4.80 18.03 ± 3.98 17.03 ± 1.11a 

Data are Mean ± SE, values within the same column of the same parameter carrying different letters are significantly 
different from each other (p< 0.05).  
 
Table 3:Gills oxidative enzymes and Malondialdehyde level in adult male Seabream fish groups exposed to 
phenanthrene for 15 days. 
 

Organ Group 
Exposure Time / Day 

0 7 10 15 

Reduced Glutathione level (GSH) (mmol/g wet tissue) 

Gills 

Control 0.30 ± 0.02 0.25 ± 0.07 0.26 ± 0.03 0.30 ± 0.02 

Phenanthrene (10 ng/ml) 0.33 ± 0.02 0.22 ± 0.05 0.28 ± 0.01 0.33 ± 0.02 

Phenanthrene (50 ng/ml) 0.38 ± 0.00 0.26 ± 0.09 0.31 ± 0.02 0.38 ± 0.00 

Vehicle (Alcohole) Control 0.35 ± 0.05 0.30 ± 0.06 0.28 ± 0.03 0.35 ± 0.05 

Glutathione-s-tranferase activity (GST) (U/g wet tissue) 

Gills 

Control 0.30 ±0.05 0.27 ±0.05 0.31± 0.05 0.28 ±0.06a 

Phenanthrene (10 ng/ml) 0.32 ±0.07 0.29 ±0.08 0.30 ±0.05 0.33 ±0.05a 

Phenanthrene (50 ng/ml) 0.33 ±0.09 0.30 ±0.05 0.30 ±0.05 0.46 ±0.06b 

Vehicle (Alcohole) Control 0.29 ±0.06 0.31 ±0.07 0.30± 0.02 0.32 ±0.03a 

Glutathione Peroxidase activity (GPx) ( U/g wet tissue) 

Gills 
Control 43.63±6.75 44.97±7.07 42.30±6.02 46.97 ±7.08 

Phenanthrene (10 ng/ml) 41.63±8.65 43.63±5.95 42.63±8.75 42.35 ±8.01 
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Phenanthrene (50 ng/ml) 44.63±6.45 43.63±8.55 45.63±8.65 45.67 ±8.011 

Vehicle (Alcohole) Control 41.03±5.60 43.37±5.23 44.50±5.11 42.57±4.12 

Catalase activity (CAT) ( U/g wet tissue) 

Gills 

Control 5.10 ±0.16 5.06 ±0.41 4.83 ±0.55 5.03 ± 0.39a 

Phenanthrene (10 ng/ml) 6.10 ±0.15 6.10 ±0.15 6.10 ±0.33 7.14 ± 0.42a 

Phenanthrene (50 ng/ml) 7.10 ±0.13 7.18 ±0.16 6.30 ±0.16 11.12 ± 0.55b 

Vehicle (Alcohole) Control 5.90 ±0.10 5.30 ±0.21 5.23 ±0.58 5.33 ± 0.40a 

Malondialdehyde (MDA) levels 

Gills 

Control 121.01±14.22 123.45±15.40 127.03±17.82 133.45 ±18.20 

Phenanthrene (10 ng/ml) 125.41±17.22 126.01±15.02 125.01±13.12 137.15 ±16.44 

Phenanthrene (50 ng/ml) 119.24±14.00 129.01±17.00 129.01±16.29 139.30 ±17.50 

Vehicle (Alcohole) Control 125.11±15.29 122.65±16.70 128.13±16.80 130.45 ±17.25 

 
Data are Mean ± SE, values within the same column of the same parameter carrying different letters are significantly different from 
each other (p< 0.05).  

 
DISCUSSION 

PAHs are considered a persistent organic 
pollutants (POPs) causing harms to the environment and 
humans, causing stress and affecting the health of 
marine life( Al-Zahabyet al.2018). 

Blood indices including transaminases (ALT & AST) 
, urea, and creatinine are considered as parameters for 
detecting hepatic and renal damage  and their 
measurement has been suggested to be useful to clarify 
organs functions(Mar Huertaset al.2014 ; Hodson,2017)  . 

       In the present study, exposure of 
adult seabream to phenanthrene (Phe) at high dose (50 
ng/ml) significantly increased serum AST and 
ALT activity at 7, 10, and 15 days of exposure and at 
days 10 and 15 of exposure to low Phe dose (10 
ng/ml). These results indicate liver damage. Previously, 
exposure of yellow sea bream to Phe significantly 
increased activities of transaminases , ALT and AST , 7 
days after the exposure (P<0.05)(Ololadeet al.2021)) 
.Elevated blood transaminase activities 
after Phe exposure may be due to cell destruction 
possibly in the liver, heart, or muscle( McDonald and 
Grosell,2006) There was no significant change in renal 
function after Phe exposure. The difference in the effect 
of Phe for both liver and kidney can be attributed to that 
the liver is the major organ for the metabolic and 
degradation pathways of the compound. It appears that 
the lowered vulnerability of the kidney to oxidative 
damage (compared to the liver), might be due to its 
higher basal level of antioxidants (Oliveiraet al.2008) 

       Several studies have shown that exposure 
to pollutants in aquatic ecosystems, including the 
compound phenanthrene, can increase intracellular 
ROS generation, causing oxidative damage to biological 
systems (Shirmohammadi et al.2017; Bordier et al.2020) 
. Antioxidant enzymes are protective factors that act as 
early indices for cellular damage caused by 

free radicals(Yadetie et al.2021).In the present study, 
antioxidants and lipid peroxidation levels were 
significantly activated in hepatic tissue (GSH, GST, 

GPx, CAT, and MDA) and gills (GSH, GST, and CAT) 
after exposure to 50 ng/mL phenanthrene at 15 days of 
exposure. As a result, significant oxidative stress was 
induced, indicating a major toxic effect of phenanthrene 
on the physiological metabolism of sea bream. 

       Antioxidant enzymes and MDA are indicators 
often used to evaluate oxidative stress and lipid 
peroxidation affecting xenobiotic (Fìratet 
al.2009).In this study, hepatic level 
of MDA was significantly increased after exposure to 
Phe, indicating cell membrane peroxidation. Similarly,Lin 
et al.(2011) found that pyrene exposure increased 
MDA content in Lateolaprax japonicus. In consistent, 
exposure to phe significantly elevated the level of MDA 
in the muscles of the estuarine 
guppy Buciliavivipara(Vijayavelet al.2006) . 

Furthermore, benzo (a) pyrene significantly 
increased the MDA level of Ruditapes philippinarum 
(Todorova et al.2005). However, there was no significant 
change in MDA content in the gill tissues after 15 days of 
Phe exposure. The difference 
in hepatic and gill responses may indicate an increase in 
the level of lipid peroxidation, suggesting more ROS was 
generated in hepatic tissue. 

      It is known that anti-oxidation enzymes are 
activated to counteract damage of oxidative stress 
(Machadoet al.2014) . The CAT, the more active 
antioxidant enzyme can reduce H2O2(Giuliani and  
Regoli,2014).In this study, TPS, GPX and 
CAT activities were significantly elevated after 15 days 
of Phe exposure which could be  a reaction to oxidative 
stress. These results corresponded to previous 
studies in which the same SOD, GST and CAT activities 
were significantly increased in Carassius Autus in 
response to Phe exposure( Wang et al.2018) The study 
also came to the conclusion  that  GSH  
induction can be attributed to the  primary  immune  
system, in which GSH is included in the protection 
of fish against free radicals. Most of the radicals 
produced can be neutralized by GSH, that acts as the 
first line of cellular defense against oxidative stress by 

https://www.researchgate.net/profile/Mehrnaz-Shirmohammadi


Wessam M. Filfilan                                                                                             phenanthrene and oxidative status in sea bream 

 

Bioscience Research, 2023 volume 20(4): 1073-1078                                                           1078 

 

scavenging oxygen radicals and sharing in detoxification 
pathways through glutathione peroxidase (Sunet 
al.2006).Glutathione-S-transferases  are a group of 
biotransferases in the  cytoplasm  of  manycells  
and participate in neutralizing of reactive compounds 
through the combination of glutathione to various 
compounds and perform other indirect 
antioxidant functions(Espinosa-Diez et al.2015)The 
present resultsare consistent withprevious studies(Dasar
i et al.2017) that showed different responses of GPx to 
Phe in hepatic and gill's tissues. They showed tissue-
specific responses to exposure to GPxPhe and O. 
niloticus exposed to diazinon(Julia et al.2022). 

CONCLUSIONS 
In conclusion, this study highlights the Phe potential to 
induce oxidative stress which should affect 
the welfare of the seabream fish. Also, the obtained 
results showed an organ-specific antioxidant defense 
mechanism dependent on Phe concentration. The liver 
showed a high adaptive capacity manifested 
by the activation of antioxidant defenses, especially GSH 
and GPX. The lowered vulnerability of gills for oxidative 
damage as compared to liver seems to be related to the 
basic level of the antioxidant 
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