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Mesenchymal stem cells (MSCs) have shown antitumor effects against various cancers. However, the mechanism of PF-
MSCs and their extracts related to prostate cancer cell lines 22Rv1 remains undetermined. Therefore, the above study 
investigated the suppressive effects of PF-MSCs extract, including PF-MSCs/CM and PF-MSCs/CL, against 22Rv1 cells 
in vitro. Firstly, the characteristics of MSCs were investigated, followed by the preparation of PF-MSCs/CM and PF-
MSCs/CL and the inhibitory effects against 22Rv1 cells. Finally, we used flow cytometry to assess how extracts affect the 
cell cycle of 22Rv1 cells and real-time polymerase chain reaction to measure the expression of inflammatory genes. Our 
study uncovered some interesting findings about PF-MSCs: they have the same markers as MSCs, can differentiate into 
bone and fat cells, and can multiply faster. When we treated the cells with 100% PF-MSCs/CM and 100 μg/ml PF-
MSCs/CL, we observed an improvement in cell viability. We also noticed that the extracts caused a decrease in the sub-
G1 population. On top of that, specific genes related to cell death, like BAX and CASP3, were more active, while genes 
associated with inflammation, such as IFN-γ, TNF-α, IL-1β, IL-6, IL-8, and IL-12A, were less active. In contrast, the 
expression of anti-inflammatory genes like IL-4 and IL-10 increased. Based on our findings, it seems that PF-MSCs can 
enhance the stimulation of 22Rv1 cells, which might be why they can promote cancer. 
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INTRODUCTION 

Prostate cancer (PCa) affects a large number of 
men worldwide, ranking as the second most widespread 
type of cancer. Around 1.3 million new cases are 
reported annually (Bergengren et al. 2023). In Saudi 
Arabia, it is the fifth most prevalent cancer among men. 
(American Cancer Society 2018; Saudi Health Council 
Saudi Cancer Registry 2018). PCa is a life-threatening 
malignant tumor with high morbidity and mortality rates 
attributed to burden and metastatic potential (Adedapo 
et al. 2012; Voinea et al. 2021). Although not the most 
common cancer among males in the Middle East, the 
future prognoses for incidence and mortality impact have 

been more foreboding in the region; however, its etiology 
remains largely unclear (Saleh et al. 2020). 

In the adult prostate, cellular homeostasis is 
maintained by a hierarchical arrangement of cells with 
varying proliferative potentials, mirroring mechanisms 
observed in other epithelial tissues (Chen et al. 2013). 
Somatic stem cells (SCs) exhibit several distinct 
properties, including self-renewal capability and 
differentiation potential across several cell lineages, 
confined proliferation in specific physiological 
microenvironments (niches), and remarkable 
proliferative potential despite their typical quiescent state 
(Reya et al. 2001). According to the hierarchical SC 
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carcinogenesis model, PCa is caused by changes in the 
genetic and epigenetic variables governing the 
proliferation of normal SCs (Kerr and Hussain 2014). 
These aberrantly expressed pathways transform normal 
SCs into cancer stem cells (CSCs), which are believed 
to drive tumor genesis, development, relapse, and 
metastasis, sharing certain traits with their non-
malignant counterparts. CSCs confer resistance to 
traditional radiotherapy and chemotherapy (Tang et al. 
2007; Yu et al. 2012). Therefore, the treatment of PCa 
poses significant challenges, underscoring the 
imperative for novel therapeutics to improve remission 
rates, reduce relapse rates, and eliminate the CSC 
population (Giridharan, Rupani, and Banerjee 2022; 
Portillo-Lara and Alvarez 2015).  

Mesenchymal stem cells (MSCs) are brilliant in 
many areas because they come from different sources, 
are easy to grow, and have interesting biological 
properties. They can differentiate into different types of 
cells and keep multiplying. MSCs also have other 
excellent abilities like fighting tumors, reducing 
inflammation, helping the immune system, preventing 
fibrosis, stopping cell death, promoting blood vessels, 
protecting nerves, fighting bacteria, and attracting 
chemicals that can help treatment. The convergence of 
these characteristics has garnered significant research 
interest, resulting in numerous therapeutic trials based 
on MSC utilization (Gopalarethinam et al. 2023; Kumar 
et al. 2019).  

While bone marrow MSCs (BM-MSCs) have been 
the primary focus of many preclinical studies, they may 
not necessarily represent the best feasible cell source. 
BM-MSCs have been employed in several clinical trials 
targeting glioma, ovarian, and prostate cancer (Jafari et 
al. 2021). However, employing these cells poses 
particular difficulties, including the requirement for 
invasive procedures to extract them from the bone 
marrow, limitations on the quantity of cells that can be 
collected, and decreased differentiation potential with 
advancing patient age (Jafari et al. 2021). Alternative 
places to obtain MSCs exist, like adipose tissue, 
placenta, umbilical cord, and Wharton's jelly 
(Kalamegam et al. 2018).  

Placental tissue, easily obtained as medical waste, 
provides a convenient source for obtaining placenta fetal 
MSCs (PF-MSCs) from the discarded placental tissue 
post-birth without ethical concerns surrounding their use 
in research. The placenta is complicated. Therefore, it 
can be logically segmented into separate components: 
the fetal side (amnion, chorion, umbilical cord) and the 
maternal side (decidua). Many studies have reported 
MSCs from placental components (Abomaray et al. 
2016; Wu et al. 2018). Perinatal sources offer several 
advantages over adult sources, including greater 
availability, reduced donor site morbidity, cell naivety, 
having more stem cells in tissues, and exceptional 
proliferative capability (Yang et al. 2013). 

MSCs release a vast spectrum of protective 
bioactive substances called the secretome, which 
modulate cell-environment cross-talk to influence 
biological processes (Madrigal, Rao, and Riordan 2014). 
Therefore, the MSC secretome has garnered 
considerable attention from researchers and can be 
potentially applied in cell-free therapeutic settings. 
Furthermore, the secretome can protect host cells by 
stopping cell death, reducing inflammation, stopping scar 
formation, having immunomodulatory effects, 
encouraging blood vessel growth, and stopping tumor 
growth (Huwaikem et al. 2021; Kološa et al. 2015; 
Vaiasicca et al. 2024). 

Various studies have proved the antitumor 
properties of MSCs derived from numerous sources 
when tested against different types of cancer cells (Fang 
et al. 2023; Gauthaman et al. 2012; Gondi et al. 2010; 
Khakoo et al. 2006). Sun et al. showed that MSCs 
suppressed the spread of cancer cells to the lungs and 
stimulated programmed cell death in breast cancer 
cells. Their research also revealed that the 
transplantation of human umbilical cord blood and 
adipose tissue into a rat metastatic cancer model did not 
stimulate tumor growth or the spread of cancer cells 
(Sun et al. 2009). Furthermore, Takahara et al. reported 
that adipose-derived stromal cells promoted apoptosis in 
commercial PCa cell lines, including LNCaP and PC3 
cells, via specific signaling pathways (Takahara et al. 
2014). Further research revealed that umbilical cord 
MSCs prevented tumor growth and exhibited antitumor 
potential against PC3 PCa cells (Safari et al. 2021). In a 
recent study, human amnion MSCs induced cellular 
apoptosis in LNCaP cancer cells in a co-culture system 
(Safari et al. 2021). 

Previous studies involving MSCs have not 
definitively determined whether all types of human SCs 
possess anticancer properties nor identified which 
cancers may respond to these anticancer effects. 
Therefore, this research examined PF-MSCs' cancer-
inhibiting effects on a PCa cell line in vitro. We sought to 
characterize MSCs derived from the human placenta 
and evaluate their anticancer properties against PCa 
using in vitro assays with the 22Rv1 cell line, focusing on 
parameters such as cell proliferation, the cell cycle, and 
related gene expression. 
  
MATERIALS AND METHODS 

PF-MSCs Culture In Vitro 
The harvesting and cultivating methods of PF-MSCs 

were followed according to Gauthaman et al. (2012). 
The Embryonic Stem Cell Unit at Jeddah's King Fahd 
Centre for Medical Research kindly provided placenta-
derived cells. Placenta-derived cells were seeded in a 
humidified incubator at 37 °C using Dulbecco's modified 
Eagle's medium – Low Glucose (CN# 11965-092; Gibco, 
USA) supplemented with 5% fetal bovine serum (FBS) 
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(CN# 10099133; Gibco, USA), 1% L-glutamine (CN# 
35050-038; Gibco, USA), and 1% penicillin/streptomycin 
(CN# 15070-061; Gibco, USA). Cells were sub-cultured 
and proliferated in vitro, following standard passaging 
procedures. The cells were cultured in vitro and allowed 
to undergo proliferation until they reached confluence. 
The trypsin-EDTA (CN# 25200056, Gibco, USA) was 
used to detached cells at a concentration of 0.25%. PF-
MSCs from passages 4–6 were used upon reaching 
90% confluence. Cell morphology was visualized using a 
phase-contrast microscope (Nikon Corporation, Tokyo, 
Japan). 

22Rv1 Cell Line Culture  
The human prostate cancer cell line 22Rv1 was 

cultured in Roswell Park Memorial Institute medium 
(RPMI-1640, CN# 21875091; Gibco, USA) containing 
10% FBS, 1% L-glutamine, and 1% 
penicillin/streptomycin in a 5% CO2 humidified 
atmosphere. The media was replaced every 48 hours 
until it reached 90% confluence. Cells were detached 
using trypsin-EDTA and then transferred to a new 
medium in culture flasks for subculturing. Cell 
morphology was examined using phase-contrast 
microscopy. 

CD Marker Expression in PF-MSCs  
Surface CD marker expression in passage 3 PF-

MSCs was evaluated by flow cytometry. For each 
antibody treatment, PF-MSCs were plated at 1 × 105 per 
Fax tube. Cells were blocked with 100 µl PBS, pH 7.4 
(CN#10010015; Gibco, USA) and 3% FBS after 
centrifugation to prevent nonspecific binding. PF-MSC 
indications were identified utilizing dual CD marker 
antibody combinations. Mix 1 had CD29 APC, CD90-
FITC, CD73-PERCP, and CD45-PE, whereas Mix 2 
included CD44-APC, CD105-FITC, and CD34-APC. In 
the dark, groups were incubated with CD marker 
cocktails at 4 °C for 20–30 min. After washing twice with 
PBS containing 3% FBS, the cells were centrifuged at 
1000 rpm for 5 min, and the supernatant was aspirated. 
A fluorescence-activated cell sorting study was 
conducted on each cell pellet in 500 µl of 3% FBS 
(FACS Aria II, BD Biosciences, USA). 

Differentiation of PF-MSCs 
Adipogenesis and osteogenesis differentiation kits 

(CN# A10070-01 and CN# A10072-01; StemPro® et al. 
USA) can turn PF-MSCs into adipocytes and osteocytes. 
A 5 × 103 cells per well were seeded in 6-well plates and 
incubated overnight in a complete culture medium. PF-
MSCs were grown in a differentiation basal medium with 
appropriate supplement (StemPro® kit components; 
Thermo Fisher Scientific, USA) and refreshed every 72 
h. Cultured cells in the differentiation basal medium only 
act as a control. PF-MSCs that become adipocytes were 
stained with oil-red O (Abcam, UK) per manufacturer 

instructions. PF-MSCs that developed into osteocytes 
were stained with alizarin red (Sigma, St. Louis, USA) 
per the manufacturer's instructions, followed by imaging 
using a light microscope. 

Experimental Design 
We separated 22Rv1 cells into three groups. . A group 
served as the untreated (control) group. The remaining 
two groups were treated with PF-MSCs: one was treated 
with PF-MSCs/conditioned medium (PF-MSCs/CM) 
(30%, 50%, 70%, and 100%), and the second was 
treated with PF-MSCs/cell lysate (PF-MSCs/CL) (30, 50, 
75, and 100 µg/ml). Phase contrast microscopes were 
used to detect morphological changes from various 
treatments. 

Preparation of PF-MSCs Extracts 
PF-MSCs/CM and PF-MSCs/CL were prepared 

according to previously published protocols (Gauthaman 
et al. 2012). Early passages (P4-P6) of 80% confluent 
PF-MSCs cultured in PF-MSC medium for 48 hours at 
37 °C and 5% CO2 yielded PF-MSCs/CM. After 
separating and filtering the medium with a 0.22 mm 
syringe (Millipore, MA, United States), it was kept at −20 
°C for immediate use or −80 °C for storage. After lysing 
the pellet with radio immuno precipitation assay lysis 
solution and protease and phosphatase inhibitors 
(Solarbio, Beijing, China), the mixture was incubated on 
ice for 30 min and then centrifuged at 14,000 g for 20 
min. Aliquots of the resulting supernatant were stored at 
-80 °C for future use. The nanodropTM 
spectrophotometers measured the PF-MSCs/CL protein 
(Nanodrop Technologies, DW, USA). 

Cell Metabolic Activity (MTT Assay) 
MTT was used to examine the proliferation of PF-

MSCs and 22Rv1. The metabolic activity of the 
experimental groups was monitored at 24 h, 48 h, and 
72 h by the instructions provided by the manufacturer. 
After the treatment, 10 μl of 5 mg/ml MTT reagent 
(Solarbio, Beijing, China) was added to each well. 
Additionally, 100 μl of fresh culture medium was added, 
and the cells were cultured for 4 hours at 37 °C in a 5% 
CO2 incubator. For dissolving formazan crystals, 100 μl 
of dimethylsulfoxide (Sigma, MO, USA) was added to 
each well after removing the supernatant and incubated 
for 5 min in the dark. A wavelength of 570 nm was 
detected using spectrophotometry (SpectraMax i3 
Multimode Reader; Molecular Devices, USA).  
 
Cell cycle analysis 

The effect of PF-MSCs/CM (100%) and PF-
MSCs/CL (100 µg/ml) treatments on the 22Rv1 cell cycle 
was evaluated following 72 h of culture using flow 
cytometry. Untreated 22Rv1 cells were used as the 
controls. In brief, 22Rv1 cells were collected, washed 
three times with PBS, and fixed in droplets with 70% 
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cold ethanol to reduce cell clumping (Sigma-Aldrich, 
Darmstadt, Germany). The samples stayed at -20°C 
overnight. The fixed cells were washed twice in PBS 
after 5 min of 1,000 rpm centrifugation. Cells were 
suspended in 400 μl of staining solution containing 50 
μg/ml propidium iodide (CN# ab14038, Abcam, UK) and 
10 μg/ml RNAse, incubated for 15 minutes in darkness. 
The marked cells were examined using the flow 
cytometer. 

Gene Expression Analysis via Real-Time Polymerase 
Chain Reaction 

For the gene expression study, the 22Rv1 cells 
treated with PF-MSCs/CM at 100%, PF-MSCs/CL at 100 
µg/ml, and untreated cells (control) were examined in 
real-time polymerase chain reaction for 72 h, following 
the protocol instructions. The RNA extraction was done 
using the RNeasy Mini Kit (Qiagen, Germany). The RNA 
quality was evaluated by measuring the 260/280 ratio 
using a NanoDrop 2000/2000c spectrophotometer. 
Random hexamers reverse transcriptase kit (Promega, 
WI, USA) were employed to reverse transcribe first-

strand cDNA. The SYBR Green master mix (Life 
Technologies, Thermo Fisher Scientific, MA, USA) was 
used in qRT-PCR. The expression of apoptotic (BIRC5, 
BAX, BCL2, CASP3) and inflammatory genes (IL-4, IL-
10, IFN-γ, TNF-α, IL-1β, IL-6, IL-8, and IL-12A) were 
analyzed using the Step One PlusTM real-time PCR 
device (Thermo Fisher Scientific, MA, USA). GAPDH 
was used as the reference gene. The forward (F) and 
reverse (R) primer sequences obtained from previously 
published studies are listed in (Table 1). 

Statistical Analysis 
Data are expressed as mean ± standard deviation. 

The statistical analysis was performed using SPSS 22.0 
(IBM Corp. in Armonk, New York, USA). An assessment 
of the normality of the value distribution was conducted 
using the Shapiro-Wilk test. One-way analysis of 
variance and Tukey's test were used for data analysis 
and group comparisons. The statistical significance level 
is below 0.05. 
 
 

 
Table 1: The genes and primer sequences used for qRT-PCR 

 

Genes Primer Sequence 

GAPDH 
F: 5'-GCACCGTCAAGGCTGAGAAC-3' 

R: 5'-GGATCTCGCTCCTGGAAGATG-3' 

BIRC5 
F: 5'-ACCAGGTGAGAAGTGAGGGA-3' 
R: 5'-AACAGTAGAGGAGCCAGGGA-3' 

BAX 
F: 5'-GGCTGGGATGCCTTTGTG-3' 

R: 5'-CAGCCAGGAGAAATCAAACAGA-3' 

CASP3 
F: 5'-TGACTGGAAAGCCGAAACTC-3' 
R: 5'-AGCCTCCACCGGTATCTTCT-3' 

IL-4 
F: 5'-TGGATCTGGGAGCATCAAGGT-3' 
R: 5'-TGGAAGTGCGGATGTAGTCAG-3' 

IL-10 
F: 5'-GCTCTTACTGACTGGCATGAG-3' 
R: 5'-CGCAGCTCTAGGAGCATGTG-3' 

IFN-γ 
F: 5'-CCCTCACACTCAGATCATCTTCT-3' 

R: 5'-GCGTTGGACATTCAAGTCAG-3' 

TNF-α 
F: 5'-GGTGCTTGTTCCTCAGCCTC-3' 
R: 5'-CAGGCAGAAGAGCGTGGTG-3' 

IL-1β 
F: 5'-CTGTCCTGCGTGTTGAAAGA-3' 

R: 5'-TTGGGTAATTTTTGGGATCTACA-3' 

IL-6 
F: 5'-CCACTCACCTCTTCAGAA-3' 
R: 5'-GCGCAAAATGAGATGAGT-3' 

IL-8 
F: 5'-AGACAGCAGAGCACACAAGC-3' 

R: 5'-ATGGTTCCTTCCGGTGGT-3' 

IL-12A 
F: 5'-CACTCCCAAAACCTGCTGAG-3' 

R: 5'-TCTCTTCAGAAGTGCAAGGGTA-3' 

 
 
 
 
 
 

 
 
 
 
 
RESULTS  
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Growth Characteristics of PF-MSCs and 22Rv1 and 
their Morphology  

Visualization using the phase-contrast microscope 
revealed that PF-MSCs exhibited fibroblast-like features 
(Figure 1a), whereas 22Rv1 cells displayed epithelial-
like characteristics (Figure 1b).The MTT assay revealed 

insignificant changes in proliferation levels between the 
22Rv1 cell line and PF-MSCs at 24 h (p = 0.137) and 48 
h (p = 0.059). However, at 72 h, the proliferation level 
was significantly lower in PF-MSCs than in 22Rv1 cells 
(p = 0.005) (Figure 1c).  

 

 

Figure 1: (a) Phase contrast micrographs showing the morphology of the PF-MSCs at passage (3) show fibroblast 
-like cells. (b) The 22Rv1 in culture showed epithelioid like cells. Scale bar is 100µm, Magnification 10x. (c) 
Comparison of Prostate Cancer Cell Line (22Rv1) and Placenta Fetal Mesenchymal Stem Cells (PF-MSCs) 
proliferation levels in different studied groups by MTT Assay *: significance versus 22Rv1-untreated (control) 
group. **: p <0.010 

CD Marker Characterization of PF-MSCs 
Analysis of FACS results shows that PF-MSCs have 

high levels of positive CD surface markers, such as 
CD105 (95.86%), CD90 (98.73%), CD73 (93.99%), 
CD44 (95.78%), and CD29 (80.93%), which are typically 
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associated with MSCs. The elevated levels of CD 
markers linked to MSCs validate the stemness potential 
of PF-MSCs. Moreover, PF-MSCs show reduced levels 
of CD34 (0.24%) and CD45 (0.23%), which are 
hematopoietic stem cell markers (Figure 2). 

Differentiation Potential of PF-MSCs 
PF-MSCs exhibited differentiation into osteocytes 

and adipocytes following culture in the differentiation 

medium. Specifically, in osteogenic differentiation, PF-
MSCs exhibited positive alizarin red staining at 14 days, 
indicating calcium mineralization. However, cells 
cultured in the adipogenic medium demonstrated lipid 
droplets at 21 days, with differentiated adipocytes 
demonstrating positive staining of oil red O (Figure 3). 

 
 

 
 
 

Figure 1: Representative histogram of the flow cytometry analysis (FACS) of MSC-related CD surface marker 
expression on PF-MSCs at early passage 
 

 
 
Figure 2: Differentiation capacity of the PF-MSCs into adipocytes. (a) represent the control; (b) osteocytes ; (c) 
adipocytes (Arrows indicate the fat cells). Scale bar is 50µm 

 
 
 

Effect of PF-MSCs Extracts on 22Rv1 Proliferation 
The MTT assay revealed a dose-dependent effect of 

PF-MSCs/CM (30%–100%) and PF-MSCs/CL (30 



Alyamani et al.                                                                                 Placenta Stem Cells Inhibit Prostate Cancer Cell Line Growth 

 

 Bioscience Research, 2024 volume 21(4): 680-691                                                                       686 

 

µg/ml–100 µg/ml) on 22Rv1 cells compared to that 
observed for the control (untreated). The most significant 
cytotoxic effect was observed in 22Rv1 cells treated with 
100% PF-MSCs/CM and 100 µg/ml PF-MSCs/CL at 72 
h. This cytotoxic effect increased gradually with the 
duration of incubation and PF-MSCs/CM and PF-
MSCs/CL concentrations. Proliferations were 
significantly lower in 22Rv1 cells treated with PF-
MSCs/CL at 50 µg/ml than in the control (p = 0.001). 
Moreover, proliferations were significantly lower in 
22Rv1 cells treated with PF-MSCs/CL than in the control 
and 22Rv1 cells treated with PF-MSCs/CM at 30, 75, 
and 100 µg/ml (p = 0.001 for all) (Figure 4). 

PF-MSC Extracts Altered 22Rv1 Cell Morphology 
Following 24 h, 48 h, and 72 h of culturing 22Rv1 

cells, noticeable alterations in morphology were 
observed in cells treated with 100% PF-MSCs/CM and 
100 µg/ml PF-MSCs/CL. In general, 22Rv1 cell 
morphology displayed cell shrinkage and death when 
treated with PF-MSCs/CM and PF-MSCs/CL (Figure 5). 

Effect of PF-MSCs/CM and PF-MSCs/CL on 22Rv1 
Cell Cycle 

Cell cycle analysis of sub-G1 revealed a significant 
reduction in 22Rv1 cells treated with PF-MSCs/CL at 
100 µg/ml compared to that in the control. Cell cycle 
analysis of sub-G2/M revealed a significant decrease in 

22Rv1 cells treated with PF-MSCs/CL at 100 µg/ml 
compared to that in the control and 22Rv1 cells treated 
with PF-MSCs/CM at 100% concentration (Figure 6). 

Effect of PF-MSCs on Gene Expression  
PF-MSCs/CM-treated 22Rv1 cells had substantially 

decreased BIRC 5, BAX, BCL2, and CASP3 gene 
expression than control (p = 0.001, p = 0.002, p = 0.001, 
and p = 0.019, respectively). PF-MSCs/CL-treated 
22Rv1 cells had considerably reduced BIRC 5, BAX, and 
CASP3 gene expression than the control and 100% CM-
treated cells (p = 0.001 and p = 0.001, respectively, for 
all). BCL2 gene expression was considerably lower in 
PF-MSCs/CL-treated 22Rv1 cells than in the control (p = 
0.001) (Figure 7a).  

There was a significant increase in the gene 
expression levels of IL-4, IL-10, IFN-γ, TNF-α, IL-1β, IL-
6, IL-8, and IL-12 A in PF-MSCs/CM-treated 22Rv1 cells 
compared to the control (p = 0.001, p = 0.005, p = 0.001, 
p = 0.001, p = 0.008, p = 0.001, p = 0.001, and p = 
0.003, respectively). IL-4, IL-10, IFN-γ, TNF-α, IL-1β, IL-
6, IL-8, and IL-12 A gene expression was notably 
elevated in PF-MSCs/CL-treated 22Rv1 cells compared 
to control and 22Rv1 cells treated with PF-MSCs/CM at 
100% (p = 0.001 and p = 0.001, respectively, for all) 
(Figure 7b). 

 

 
 
Figure 4: Comparison of 22Rv1 cells following treatment with PF-MSCs extracts (PF-MSCs/CM and PF-MSCs/CL) 
proliferation levels in different studied groups by MTT Assay at 72 h. *: significance versus 22Rv1-untreated 
(control) group; #: significance versus 22Rv1-treated with PF-MSCs/CM. ***p <0.001 
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Figure 5: Phase contrast images of the 22Rv1 cells following treatment with 100% PF-MSCs/CM and 100µg/ml PF-
MSCs/CL for 24 h, 48 h, and 72 h. An increase in cell death of 22Rv1 cells  with time following treatment with PF-
MSC extracts was noted 

 

Figure 3: Cell cycle analysis assay of 22Rv1 cells following treatment with PF-MSCs/CM and PF-MSCs/CL.*: 
significance versus 22Rv1-untreated (control) group; #: significance versus 22Rv1-treated with PF-MSCs/CM. *p 
<0.050, ***p <0.001 
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Figure 7: (a) Gene expression of apoptotic markers in 22Rv1 cell line following treatment with PF-MSC  extracts 
(PF-MSCs/CM and PF-MSCs/CL). *: significance versus 22Rv1-untreated (control) group; #: significance versus 
22Rv1-treated with PF-MSCs/CM. *: p <0.050, **: p <0.010, ***p <0.001. (b) Gene expression of inflammatory 
markers in 22Rv1 cell line following treatment with PF-MSC extracts (PF-MSCs/CM and PF-MSCs/CL). *: 
significance versus 22Rv1-untreated (control) group; #: significance versus 22Rv1-treated with PF-MSCs/CM. **: 
p <0.010, ***p <0.001 

 
DISCUSSION 

MSCs may be used in regenerative medicine as cell-
based treatments and have pro- or anti-cancer qualities 
when designed to carry tiny medicines or apoptotic 
inducers (Hmadcha et al. 2020; Wu et al. 2020). In this 
study, we conducted multiple independent experiments 
to examine the in vitro anticancer characteristics of PF-
MSC extracts using the 22Rv1 cell line. Our findings 
indicated that PF-MSCs successfully developed into 
mesodermal tissue lineages such as osteocytes and 
adipocytes and expressed MSC-related CD surface 
markers. Moreover, the cell morphology revealed 
spindle-shaped fibroblast-like cells. 

Prior to this study, the differential effects of PF-
MSCs/CM and PF-MSCs/CL on 22Rv1 cells had 
remained unelucidated. However, it is plausible that 
MSCs may indirectly induce 22Rv1 cell death through 
factors present in either their CM or CL. Therefore, the 
purpose of the current research was to evaluate the 
anticancer effects of PF-MSCs/CM and PF-MSCs/CL on 
22Rv1 cells. PF-MSC extracts induced shrinkage and 
membrane damage in 22Rv1 cells, culminating in cell 
death (Figure 5). The main finding of this study is the 
observed presence of a higher anticancer potential of CL 
than that of CM against 22Rv1 cells. This effect 
exhibited dose-dependent cytotoxicity on 22Rv1 cells, 
with the highest observed for 100 µg/ml PF-MSCs/CL at 
72 h. 22Rv1 cell death might be attributed to the indirect 
mechanism involving the release of chemokines, 
cytokines, and other inflammatory chemicals from PF-

MSCs into their CM or CL (Jantalika et al. 2023; Opo et 
al. 2023; Sasportas et al. 2009). Additionally, MSCs-CM 
demonstrated antitumor capabilities by inhibiting cancer 
cell proliferation. Previous studies have indicated that 
umbilical cord MSCs and/or their extracts exhibit 
paracrine activities, which inhibit ovarian, breast, lung, 
and bone cell lines in vitro (Chao et al. 2012; Fang et al. 
2023; Kalamegam et al. 2018). Moreover, evidence 
suggests that the microenvironment of human amnion 
MSCs secretes soluble substances that may halt the 
proliferation of PCa cells (Rolfo et al. 2014).  

Given that cell cycle dysregulation is a characteristic 
of tumorous cells, interventions that arrest cell cycle 
progression or induce apoptosis are regarded as crucial 
approaches for cancer treatment (Hanahan and 
Weinberg 2011). Our study demonstrated the ability of 
PF-MSCs/CM and PF-MSCs/CL to induce 22Rv1 cell 
cycle arrest in the G2/M phase. Notably, a roadblock in 
the G2/M phase was observed, suggesting a possible 
target for cancer treatment. Cell cycle progression 
ceases when cells sustain DNA damage during the late 
"S" or "G2" phases, owing to their inability to enter the 
mitotic phase (Wang et al. 2009). 

Our results revealed that PF-MSC extracts induced 
22Rv1 cell death, as observed through qPCR analysis 
targeting BIRC 5, BAX, BCL2, and CASP3. The highest 
apoptotic effect was observed following treatment with 
the highest ratio/concentration of PF-MSCs/CM (100%) 
and PF-MSCs/CL (100 µg/ml), suggesting a dose-
dependent response to the PF-MSC extracts. Consistent 
results have been observed in a previous study where 
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MSCs inhibited Bcl2 and Wnt signaling, thereby 
triggering apoptosis in cancer cells (Wang and Scadden 
2015). Kalamegam et al. also described that the 
extraction of human Wharton's jelly MSCs induced 
cellular damage, upregulated CASP3 gene expression, 
and regulated genes involved in the cell cycle, ultimately 
suppressing the growth, proliferation, and apoptosis of 
ovarian cancer cells (Kalamegam et al. 2018). Similarly, 
Han et al. demonstrated that MSCs extracted from the 
human cord inhibited the growth and proliferation of PCa 
cells (Han et al. 2014). 

Chronic inflammation promotes tumor growth and 
spread by enabling cancer cells to escape immune 
surveillance via soluble and cellular inflammatory 
mediators (Huwaikem et al. 2021). Our study found an 
increase in the expression of pro-inflammatory 
cytokines, including IFN-γ, TNF-α, IL-1β, IL-6, IL-8, and 
IL-12, which are known to accelerate cancer 
progression. A previous study found a link between pro-
inflammatory cytokines and cancer risk, including IL-1β, 
IL-6, and TNF-α (Trompet et al. 2009).  

CONCLUSIONS 
PCa treatment costs can vary depending on the 

stage, which may involve surgery, radiation, and 
chemotherapy. The current study assessed the effects of 
PF-MSC extract on prostate cancer cell lines in vitro. 
These samples reduced the amount of 22Rv1 cells by 
triggering apoptosis and halting the cell cycle. PF-MSC 
may suppress 22Rv1 cells by increasing anti-
inflammatory cytokines and decreasing pro-inflammatory 
genes and cytokines. Nonetheless, more in vivo and 
clinical trials must be conducted before utilizing these 
extracts for PCa treatment. 
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