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Enhancing plant resilience is essential as the globe struggles with rising agricultural needs and unpredictable 
environmental stresses. To improve food security, we must develop stress-resilient plant varieties. This task requires 
understanding nanoparticles' ground-breaking role in reducing plant stress. Nanoparticles' unique chemical and physical 
properties can significantly enhance plant development, nutrient uptake, and stress tolerance, thereby revolutionizing 
sustainable agriculture. Various approaches are used in the synthesis of nanoparticles. Traditionally, physicochemical 
techniques raise environmental concerns due to using toxic substances and producing harmful byproducts. Recently, 
biosynthesis, an environmentally friendly method of synthesizing nanoparticles, has emerged, overcoming the limitations 
of conventional techniques. Biosynthesis of nanoparticles, which uses all living things, including plants and 
microorganisms, is a promising avenue. Plants stand out for their potential to produce green nanoparticles due to their 
rapid growth, stability, and suitability for large-scale biosynthesis.  
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INTRODUCTION 

Sustainable development, which balances present 
needs with the ability of future generations to meet their 
requirements, is a pressing issue in many sectors, 
particularly agriculture (Hano and Abbasi, 2021). The 
increasing need for agricultural production due to global 
climate change and population explosion presents an 
unprecedented challenge for the existing agricultural 
system (Bhandari et al. 2023), where food output must 
increase by 60–80% to feed about 10 billion people by 
2050 (Etesami et al. 2021). Adverse environmental 
changes have harmed the world agriculture sector in 
recent years. As a result of these climatic changes, the 
abiotic environment of plants has changed, impacting 
plant physiology, growth, and productivity. Abiotic stress 
in plants is one of the most significant barriers to global 
agricultural output and food security (Al-Khayri et al. 
2023). Therefore, there is a need to find new technologies 
to overcome these problems achieving the twin 
challenges of global food security and sustainable 
progress of modern agriculture (Zulfiqar and Ashraf, 

2021). 
One cutting-edge strategy to boost agricultural yield 

is nanotechnology, which uses nanoparticles (small 
particles ranging in size from 1 to 100 nm) and can create 
higher-quality materials and goods. Modern agricultural 
techniques rely heavily on nanomaterials, such as nano-
sensors, nanocides, nano fertilizers, nano barcodes, and 
nano-remediators (Bhandari et al. 2023). However, the 
physical and chemical methods of producing 
nanoparticles are not environmentally friendly or cost-
effective (Bhandari et al. 2023). Thus, green chemistry 
and bioprocesses have become the center of attention for 
researchers in their quest for a reliable, safe, non-toxic, 
and environmentally acceptable way to produce NPs 
(Radulescu et al. 2023). Green nanotechnology generally 
refers to applying several biotechnological approaches to 
biological pathways—such as bacteria, fungi, or plants—
to synthesize nanomaterials  (Pal et al. 2019). Plant 
extracts are one of the easiest ways to synthesize 
nanoparticles on a large scale compared to bacterial or 
fungal-assisted synthesis, among other greenways. 
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When used in this context, these substances are known 
as biogenic nanoparticles (Chopra et al. 2022). Green 
synthesis aims to develop chemical methods that 
minimize or eliminate the need for hazardous materials in 
creating, manufacturing, and using chemical products. 
This means minimizing the pollutants produced during the 
synthesis processes, eliminating the use of nonrenewable 
raw materials and the waste they make, and reducing the 
synthesis time required. (Pal et al. 2019). Thus, this 
review paper aims to illuminate the latest advancements 
and trends in plant-mediated nanoparticle production, the 
variables that influence the synthesis and 
characterization of NPs, and the mechanisms underlying 
phytogenic NP absorption in plants. It will also highlight 
the application of nanoparticles in sustainable agricultural 
practices. 

Nanoparticles (NPs) 
Nanoparticles are particles that have at least one 

dimension less than 100 nm(Thabet and Alqudah, 2024) 
and have a variety of distinctive characteristics, including 
a high surface area to volume ratio, crystal structure, 
adjustable pore size,  and Living organisms' cellular and 
molecular activity (Azameti and Imoro, 2023). The two 
main strategies for synthesizing nanoparticles are top-
down and bottom-up methods. Many synthetic routes 
have been used, including chemical, physical, and 
biosynthetic ones (Jadoun et al. 2021). Synthesis of 
nanoparticles (NPs) is typically accomplished by costly 
and environmentally hazardous chemical and physical 
procedures that need a lot of energy and produce 
dangerous byproducts (Chakraborty et al. 2022). 
However, green biogenic methods are simple, 
convenient, eco-friendly, and safe (Ragab & Saad-Allah, 
2020). Recently, Plant and algal tissues have been used 
as reducing agents to synthesize biogenic nanoparticles, 
using a bottom-up approach to green nanotechnology. 
This low-energy method reduces metal ions from liquids 
(figure 1) (Bhandari et al. 2023).The biosynthesized NPs 
could be used in agricultural systems to increase their 
resilience, sustainability, and efficiency in the face of 
global environmental stressors(Zulfiqar and Ashraf, 
2021). 

Biosynthesis of NPs 
The biosynthetic process uses microorganisms and 

plants to safely, environmentally friendly, and sustainably 
synthesize nanoparticles. The three essential 
requirements for synthesizing nanoparticles are choosing 
a safe stabilizing substance, an effective reducing agent, 
and an environmentally friendly solvent (Sarkar and 
Kalita, 2023). Fungi, algae, bacteria, plants, and other 
organisms can all be used in this synthesis. Plant parts 
such as leaves, fruits, roots, stems, and seeds have all 
been used to synthesize different kinds of nanoparticles 
due to the phytochemicals in their extract having reducing 

and stabilizing properties (figure 2) (Jadoun et al. 2021). 
When comparing utilizing plant extract to produce 
nanoparticles to other environmentally benign biological 
systems such as bacteria, there are advantages, such as 
the ability to do away with costly and time-consuming 
preparation and isolation techniques (Chopra et al. 2022),  
where the time required to complete NPs synthesis 
depending on the kind of plant biomolecules and the 
concentration of plant extracts. However, cultivating 
microorganisms requires a significant amount of time, 
typically 2 to 10 days. The toxicity of certain 
microorganisms impacts the qualities of produced NPs. 
While bacteria are still challenging to get, plants are 
readily available, processing of nano-synthesis based on 
plant extracts takes place at room temperature. 
Conversely, high temperatures are necessary for 
producing metallic NPs using microorganisms (Azad et al. 
2023). Plant-based biosynthesis offers a significant 
advantage over other methods because it is a simple 
process that can be easily scaled up for the large-scale 
production of nanoparticles.(Chopra et al. 2022). 

Green synthesis of nanoparticles: the involvement of 
plants 

Different plant parts, including bark, fruit, leaf, latex, 
peel, seed, stem, shoot, root, phytochemicals, and 
essential oils and their extracts are extensively utilized for 
eco-friendly nanoparticle production because of their 
abundant sources of proteins and carbohydrates, 
enzymes, vitamins, organic acids, flavonoids, phenols, 
tannins, and terpenoids are responsible for metallic ions 
bio-reduction (Ahmed et al. 2021). There are many 
studies concerning the use of plants and their biomass in 
the synthesis of nanoparticles are underway (Bhandari et 
al. 2023), as shown in Table (1). 

There are three methods to use plants to synthesize 
green nanoparticles: intracellular, extracellular, and 
phytochemical-mediated. The Intracellular approach is 
quite similar to the intracellular method employing 
microorganisms in that the synthesis occurs internally in 
the plant cell, and disassembling the structure yields the 
nanoparticles. Plant species' growth factors must be 
controlled to prevent them from interfering with synthesis 
(Saim et al. 2021). Extracellular: This approach is the 
most popular due to its simplicity and quickness. The first 
step in the procedure is to extract a plant. Usually, a metal 
salt precursor is added to a water-based extract. The 
various components in the extract work together to create 
and stabilize nanoparticles in one step. (Naikoo et al. 
2021). Phytochemically mediated: this approach 
resembles the extracellular strategy but uses separated 
phytochemical chemicals and other materials to stabilize 
the nanoparticles. More components and stages are 
involved, but there is more control over the synthesis 
(Álvarez-Chimal and Arenas-Alatorre, 2023). 
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Figure 1: Nanoparticle synthesis techniques 

 

 
Figure 2: Green synthesis of phytogenic nanoparticles 
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Table 1: Green nanoparticle synthesis using various parts of plant source 

Plant 
Source of 

Plant extract 
Phytogenic 

Nanoparticles 
Size (nm) References 

Jasmin sambac Leaf Copper 13.4 Nouren et al. (2024) 

Cakile maritima Seed Silver 9.45–17.15 Elazab et al. (2024) 

Nymphaea tetragona Flower Platinum 4.04±1.31 Zhang et al. (2023) 

Cynara cardunculus Flower petals Silver 8 - 20 Saygi et al. (2024) 

Nigella sativa Seed Copper 98.23  Kumar et al. (2023) 

Pteris vittata Leaf Silver 17 Jha et al. (2022) 

Litchi chinensis Peel Zinc <10 Sachin et al. (2023) 

Carica papaya Peel Zinc 170 Easmin et al. (2024) 

Musa acuminata Peel Nickel 20–80 Şahin et al. (2024) 

Actinidia chinensis Fruit Peel Silver 10 to 70 Bharathi et al. (2024) 

Barleria buxifolia Leaf Silver 80  Sekar et al. (2022) 

Nymphaea tetragona Flower platinum 4.04±1.31 Zhang et al. (2023) 

Nigella sativa Seed Copper 98.23  Kumar et al. (2023) 

Rubia cordifolia (L.) Leaf Silver 20.98 Chandraker et al. (2022) 

Cissus quadrangularis (L.) Stem Zinc 88 Nazneen and Sultana (2024) 

Turmeric curcumin Root Gold 8.5 Kabak et al. (2024) 

Allium cepa Yellowish peel Silver 19.47±1.12 Baran et al. (2023) 

Abelmoschus esculentus Fruit Copper 20 Javid-Naderi et al. (2023) 

Terminalia chebula Fruit Copper 10-12 
Munusamy and Shanmugam 

(2023) 

Solanum nigrum Fruit Selenium 87 Saranya et al. (2023) 

Cinnamomum verum Leaf Silver 10 -45 Zhou et al. (2022) 

Euterpe oleracea Mart. Seed Zinc 60 Vieira et al. (2024) 

Elettaria cardamomum Seed Silver 21 Mohammed et al. (2024) 

Moringa oleifera Leaf Selenium 71.2 
Banerjee and Rajeswari 

(2024) 

Abrus precatorius Bark Magnesium 100  Ali et al. (2023) 

Balanites aegyptiaca Stem bark Copper 10–30 Teklu et al. (2023) 

Jasmin sambac Leaf Copper 13.4 Nouren et al. (2024) 

Mangifera indica Seed Zinc 40–60 Rajeshkumar et al. (2023) 

Nauclea latifolia Fruit Zinc 9 -12 Abegunde et al. (2024) 

Capsicum annum Fruit Gold 20–30 Patil et al. (2023) 

Pteris vittata Leaf Silver 17 Jha et al. (2022) 

Barleria buxifolia Leaf Silver 80  Sekar et al. (2022) 

Rubia cordifolia (L.) Leaf Silver 20.98 Chandraker et al. (2022) 

Cakile maritima Seed Silver 9.45–17.15 Elazab et al. (2024) 

Artichoke Flower petals Silver 8 to 20 Saygi et al. (2024) 

Mangifera indica Seed Zinc 40–60 Rajeshkumar et al. (2023) 

Ficus Carica Leaf Iron 43–57 Üstün et al. (2022) 

Peltophorum pterocarpum Leaf Iron 85 Shah et al. (2022) 

Lysiloma acapulsensis 
Stem and 

roots 
Silver 1.2–62 Garibo et al. (2020) 

Euphorbia granulata Shoot Silver 5–20 Periyasami et al. (2022) 

Taraxacum officinale Leaf Silver 15 Periyasami et al. (2022) 

Camellia japonica Leaf Gold 40 Sharma et al. (2019) 

Plukenetia volubilis (L.) Leaf Copper 6–10 Kumar et al. (2020) 

Mentha spicata Leaf Zinc 11–88 
Abdelkhalek and Al-Askar 

(2020) 

Punica granatum (L.) Fruit peel Iron 21–23 Bouafia et al. (2022) 

https://en.wikipedia.org/wiki/Musa_acuminata
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Cont. Table:1 

Plant 
Source of 

Plant extract 
phytogenic  

Nanoparticles 
Size (nm) References 

Euphorbia falcata Leaf Copper 5−10  Motahharifar et al. (2020) 

Eryngium planum Leaf Iron 26–42 Dehghan et al. (2022) 

Torreya nucifera Leaf Silver 10–125 Kalpana et al. (2019) 

Cissus quadrangularis Stem Silver 24 Kanimozhi et al. (2022) 

Ziziphus mauritiana Leaf Silver 10–45 Sameem et al. (2022) 

Conocarpus lancifolius Fruits Silver 21 Oves et al. (2022) 

Tecoma capensis Leaf Gold 10–35 Hosny et al. (2022) 

Jatropha integerrima Jacq. Flower Gold 38.8 Suriyakala et al. (2022) 

Cucumis prophetarum Leaf Silver 30–50 Hemlata et al. (2020) 

Cochlospermum gossypium Tree gum Selenium 105.6 Kora (2018) 

Anogeissus latifolia Gum ghatti Palladium 4.8±1.6 Kora and Rastogi (2018) 

Euterpe oleracea Mart. Seed Zinc 60 Vieira et al. (2024) 

Elettaria cardamomum Seed Silver 21 Mohammed et al. (2024) 

Carissa carandas Fruit peel Iron 33–37 Bouafia et al. (2022) 

Spinacia oleracea (L.) Leaf Gold 16.7 Zhu et al. (2022) 

Cinnamomum verum Leaf Silver 10 -45 Zhou et al. (2022) 

 

 
Figure 3:  Synthesis of phytogenic nanoparticles using plant extracts 

 
One way to summarize the basic steps for the eco-

friendly synthesis of various nanoparticles is as follows: 
get plant extract, mix it with the metal salt solution under 
specific circumstances, filter the mixture, reduce the 
amount of metal particles, and carry out additional steps 
to get the required nanoscale metal (Ying et al. 2022). 
Figure 3 explains the synthesis procedure and how to 
obtain plant extract. 

Plant extracts high in phytocompounds might be 
utilized as bio reductors, stabilizing agents, and bio 
activators to compress and trap extracellular NPs 
effectively. The synthesis of NPs can be significantly 
influenced by modifying a plant species' reduction 
capability, as varying levels of active, reducing chemicals 
are present in them. Moreover, NP synthesis is influenced 
by time, pH, calcination temperature, and plant extract 
(active phytocompound) content (Bhandari et al. 2023). 

Factors affecting in phytogenic synthesis of NPs 
The efficiency of NPs can be significantly increased 

by altering their size and form. The concentration of salts 
and plant extracts, temperature, pH, reaction time, and 
reactant concentration can all be changed in the 
experiment to alter these morphological characteristics. 
To maximize NP synthesis, these parameters must be 
properly controlled. (Azad et al. 2023). 

Types of Plants and Biomolecules 
One significant element that varies depending on the 

kind of plant utilized for NP synthesis is the kind of 
phytochemicals and biomolecules the plant contains. 
Following initiation, the following stage is called bio 
reduction, during which phytochemicals, or biomolecules, 
lower metal ions in salt solutions and change them from 
mono- or divalent oxidation states to zero-valent oxidation 
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states. The sample solution will change color, indicating 
the nucleation. While smaller particles combine to 
produce larger, more stable particles during the 
development phase, the bioactive substances during the 
termination stage determine the morphology of the NPs. 
(Azad et al. 2023). 

Plants differ in their NPs production pathways 
because of the composition and structure of their 
bioactive compounds. Plant extracts and metal ion 
solutions interact differently, leading to NPs of varying 
sizes depending on reaction duration, temperature, and 
pH. The distinct physical, chemical, and biological 
characteristics of the produced NPs are influenced by 
these size variations. Therefore, the bioactivities of the 
NPs depend on the characteristics of phytochemicals 
found in plant extracts. (Aboyewa et al. 2021). 

Reaction Conditions 
Optimizing the reaction parameters is essential for 

synthesizing nanoparticles (NPs) from plant extracts. This 
entails closely monitoring and managing the pH, reaction 
duration, temperature, and the proportions of metal salts 
to plant extracts. 

PH of the Plant Extract 
PH is important in defining the shape of NPs. Larger 

NPs typically develop in an acidic pH environment (Azad 
et al. 2023). Studies have shown that the pH impacts how 
strongly metal ions bind to the extracts' biomolecules. At 
different pH levels, NPs with tetrahedral, hexagonal, 
spherical, rod-shaped, and irregular shapes can be 
created. Higher pH usually results in smaller NPs (Dikshit 
et al. 2021). 

Plant Extract Concentration 
The amount of plant extract used to synthesize 

metallic nanoparticles (NPs) significantly affects their 
size, shape, and pace of creation (Dikshit et al. 2021). 
Increased T. Collinus leaf extract concentration resulted 
in more significant production of secondary metabolites 
and the synthesis of smaller and more stable 
nanoparticles (Soto-Robles et al. 2019). 

Temperature 
Temperature impacts nanoparticle size, shape, and 

production rate. Plant extracts containing phytochemicals 
are typically briefly heated below 60 °C. The 
phytoconstituents in biomass extract may disintegrate 
after prolonged exposure to high temperatures. It has 
been observed that NP production and average size are 
reduced at higher temperatures (Vanlalveni et al. 2021).  

Reaction Time 
One of the most critical factors in NPs synthesis is the 

reaction time. For NPs to fully nucleate and remain stable, 
the reaction must last the right amount of time. It's been 
demonstrated that longer reaction times lead to more NPs 

generation (Xiong et al. 2020). 

Mechanisms of phytogenic NPs uptake in plants 
There are various ways to apply NPs to plants, such 

as priming, irrigation, hydroponic substrate, foliar 
application, and direct injection (Abou-Zeid et al. 2021). 
There are multiple ways in which plants can absorb 
nanoparticles from the soil solution. For example, NPs 
can enter the roots of plants through the apoplast, which 
are non-living areas within the plant, the symplast, which 
are living sections of the plant, or endocytosis (Thabet & 
Alqudah, 2024). Moreover, NPs can enter plants through 
the tiny holes on the leaf surface known as stomata. This 
route is vital for airborne nanoparticles because, once 
within the plant, they can move through the xylem and 
phloem from the roots to other plant parts (X. Wang et al. 
2023). The physiology and structural characteristics of the 
plant, the size, kind, chemical makeup, functionalization, 
and stability of the NPs, their interactions with the soil (the 
environmental conditions), root exudates (mucilage and 
metabolites), and microorganisms associated with the 
roots all affect how well the NPs are absorbed, 
translocated, and accumulated (Etesami et al. 2021). 
Furthermore, plants' nanoparticle absorption can cause 
various biological reactions, such as changes in gene 
expression, stress tolerance, and efficient nutrient use (X. 
Wang et al. 2023). 

Application of phytogenic NPs in Sustainable 
Agricultural Practices 

Application of phytogreen NPs as Nanofertilizers 
Global efforts are underway to assure sustainable 

food production by creating fertilizers that, when applied 
over time, do not degrade soil fertility or the environment. 
NPs are increasingly being used as nano fertilizers in 
agricultural areas worldwide to reduce the use of chemical 
fertilizers (Agri et al. 2022). As an efficient supply of 
micronutrients and a less expensive alternative to 
conventional fertilizers, nano-fertilizers (NFs) lessen 
chemical fertilizers' phytotoxicity and environmental 
impact (Avila-Quezada et al. 2022). Apart from inducing 
various physiochemical and morphological alterations, 
boosting yield, and enhancing soil fertility, nano-fertilizers 
aid in accurately releasing nutrients, facilitating their easy 
absorption by plants (Bhandari et al. 2023). 

 Application of phytogreen NPs as Nanopesticides 
The global economy is significantly impacted by the 

reduction in crop output caused by phytopathogens. 
Pathogenic fungi are the biggest obstacles to agricultural 
growth, which cause over 70% of plant diseases (Hassan 
et al. 2019). Applications of NPs in agriculture, such as 
germination, plant development, stress tolerance, and 
disease control, have been researched. Using NPs as 
antimicrobials is a novel and successful way to manage 
bacteria that cause illness in crop plants. NPs are widely 
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known for having strong fungicidal, bactericidal, and 
nematocidal qualities because they contain 
phytocompounds and biocontrol agents (Bhandari et al. 
2023). Two fungicides with NPs that are available 
commercially are Subdue and Cruiser MAXX. Specific 
nanoparticles cause harm to bacterial cell membranes, 
causing damage to DNA replication, membrane potential, 
ROS metabolism, ATP synthesis, apoplastic trafficking, 
and toxin production inhibition (Castillo-Henríquez et al. 
2020). In fungi, NPs suppress the germination of fungal 
spores and the formation of hyphae and sporangia 
(Devatha et al. 2018). Nano-pesticides are innovative 
technological advancements with various advantages 
due to their concentrated distribution of active ingredients 
in soil and plants. These advantages include better 
efficacy, longer shelf life, fewer active ingredient 
quantities, fewer pesticide applications, and little 
nutritional loss. However, to determine the effective dose 
of nanoparticles, it is necessary to comprehend the 
concentration dependency of the natural soil system 
(Bhandari et al. 2023). 

Applications of phytogreen NPs in Abiotic Stress 
Management 

Plant growth is enhanced when Phyto green 
nanoparticles alter proline and nitrogen metabolism-
related enzymes and proteins, osmotic pressure, and 
nutritional balance; They also affect the presence and 
functionality of vital antioxidant enzymes, including 
superoxide dismutase, catalase, and peroxidase. 
(Chakraborty et al. 2022).  

The main ways NPs under drought stress mitigate the 
osmotic stress caused by water scarcity are enhanced 
root development, increased aquaporin expression, 
modified intracellular water metabolism, compatible 
solute buildup, and ionic homeostasis. NPs also increase 
the photosynthetic activity of drought-induced plants. By 
lowering reactive oxygen species and triggering 
antioxidant defense mechanisms, nanoparticles mitigate 
oxidative stress damage by decreasing the amount of 
water lost from leaves due to ABA buildup through 
stomatal closure (Seleiman et al. 2020). When applied in 
varying quantities to mitigate the effects of heat stress, 
nanoparticles enhanced plant growth and hydration (Ali et 
al. 2021). When sprayed at low concentrations, NPs have 
antioxidative qualities; nevertheless, at large 
concentrations, NPs cause oxidative stress in plants. 
When plants are stressed by heat, they produce heat 
shock proteins and molecular chaperones. A heat shock 
protein is involved in heat stress resistance and helps 
other proteins stay stable under stressful circumstances 
(Khalid et al. 2022). According to reports, NPs can control 
how plants react to salt stress by enhancing chlorophyll 
content, photosynthetic rate, hormone concentrations, 
antioxidant enzyme activity, ion homeostasis, gene 
expression, and defense system activities in plants 
(Zulfiqar and Ashraf, 2021). 

Under heavy metal stress, HMs can be absorbed and 
transformed by nanoparticles, which lowers HM mobility 
and bioaccumulation (Al-Khayri et al. 2023). Additionally, 
NPs cause the development of apoplast barriers, which 
lower the root's concentration of heavy metals. 
Furthermore, by forming complexes with them, certain 
NPs can regulate the genes that encode the metal 
transporter in plants, thereby intercepting heavy metals 
and preventing their translocation (Wang et al. 2021).  

Applications of phytogreen NPs as Nanobiosensors 
 Various nanoparticles (NPs) are employed in nano-

biosensors to detect physical and chemical variations, 
track bioactive substances, and measure pollutants. A 
nano biosensor for measuring water quality was 
successfully developed by Jebril et al. (2021) through the 
nanoengineering of environmentally benign silver 
nanoparticles using plant extracts. Nan biosensors have 
many applications throughout the agri-food supply chain, 
such as crop protection, soil condition monitoring, insect 
identification during storage, and quality control (Thakur 
et al. 2022). Nan biosensors have aided in developing 
precision farming and intelligent agriculture by detecting 
changes in seed viability, crop nutrient requirements, and 
fruit shelf life (Mittal et al. 2022).Precise farming offers 
comprehensive information about the soil or field 
conditions to maximize production. (Mittal et al. 2022). 

Application of phytogreen Nanoparticles in 
Bioremediation 

Human activities such as farming, industry, and other 
pursuits typically cause high levels of dangerous 
contaminants, including pesticides, heavy metals, textile 
dyes, etc.(Malik et al. 2022). NPs remove environmental 
pollutants as filters, adsorbents, immobilizing, and 
photocatalytic agents because of the unique properties of 
biogenic NPs, including their reduced intra-particle 
diffusion distance, high surface area, stability, and 
capacity for reuse and recycling, their use in identifying, 
removing, and the removal of dangerous pollutants from 
various environmental matrices has been increasing 
lately. Further improving these NPs' suitability for 
remediation investigations is their ease of synthesis and 
surface-functionalization (Bhandari et al. 2023). 

CONCLUSIONS 
The plant-mediated green chemistry technique has 

garnered significant attention among conventional 
approaches for nanoparticle synthesis because it is 
environmentally friendly. Additionally, producing 
nanoparticles using plants replaces expensive chemicals 
and is low-energy, simple, and easily scalable. Various 
parts of the plant, including leaves, stems, roots, peel, 
bark, flowers, fruit, and seeds, are used to synthesize 
nanoparticles. The size and form of phyto-nanoparticles 
are controlled by various physiochemical factors. Thus, 
the remarkable biocompatibility, potency, biofortification, 
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and biocontrol ability of phytogreen synthesis NPs, along 
with their unique characteristics, make them promise to 
revolutionize the agricultural and environmental sectors. 

Nevertheless, green plant-based nanoparticle 
synthesis also confronts challenges in identifying and 
forecasting the mechanisms involved in the specific 
chemicals that stabilize and bio reducing. Furthermore, 
plant extracts combine metal salt bio reduction processes 
to produce nanoparticles.  Thus, more investigation is 
needed to pinpoint the precise phyto molecules mediating 
the pathway for nanoparticle production. Knowing which 
plant molecules to identify will make it easier to control the 
size and structure of nanoparticles, providing many 
industrial, medical, and agricultural applications. 
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