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Bebara medicinal plant (Timonius flavescens (Jacq.) Baker.) is a plant used by local communities in 
Central Kalimantan as a medicine for health recovery and increasing the production of breast milk after 
giving birth. Information and publications regarding the introduction of species and classification of 
bebara plant still does not yet exist so far and this is the new studies topic and interesting points to be 
studied further. This research aims to analyze the sequence variation of matK rbcL, tnrL genes and to 
construct phylogenetic trees in bebara plant through the use of a PCR (Polymerase Chain Reaction)-
based method. The analysis of sequence variation shows a difference between bebara padang and 
bebara natai. The analysis results of the matK gene reveals 5 nucleotide differences; the rbcL gene has 
3 nucleotide differences and there is a cytosine (C) base insertion on bebara padang; and the tnrL gene 
has 2 nucleotide differences. MatK gene is used to identify this plant because it has more nucleotide 
variations than the tnrL and rbcL genes. Phylogenetic trees with matK gene show that bebara padang 
and bebara natai are grouped in the family of rubiaceae. By using pairwise distance values, it obtains 
the results that bebara natai has a genetic distance value of 0.001 with Chomelia brachypoda, Timonius 
subauritius, Timonius mollis, Timonius korrensis and Timonius selsedoi. On bebara padang has a 
genetic distance value of 0.017 with Chomelia brachypoda, Timonius subauritius, Timonius mollis, 
Timonius korrensis and Timonius selsedoi. The genetic distance value of bebara padang and bebara 
natai is 0.016. This study recommends the importance of further research on species identification, plant 
morphological characteristics, the content of bioactive compounds and cultivation efforts conducted. 
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INTRODUCTION 

Bebara medicinal plant Timonius flavescens 
(Jacq.) Baker.) is a plant used by local 
communities in Central Kalimantan as a medicine 
for health recovery and increasing the production 
of breast milk after giving birth. Information and 
publications regarding the introduction of species 
and classification of bebara plant still does not yet 

exist so far. Its scientific/latin name is given based 
on the results of herbarium sample identification 
of bebara plant sent to UPT Balai Konservasi 
Tumbuhan Kebun Raya Purwodadi (Technical 
Implementation Unit for Plant Conservation 
Center of Purwodadi Botanical Garden) and LIPI 
(Indonesian Institute of Sciences) “Herbarium 
Bogoriensi”, the Botanical Field of Biology 
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Research Center. Accurate species identification 
using traditional methods can take a long time due 
to lack of knowledge about plants and/or lack of 
flower and fruit characteristics needed for the 
identification (Drouet  et al., 2018; Wäldchen  et 
al., 2018; Baird et al., 2018; Seethapathy et al., 
2018; Nagarajan  et al., 2018; Sogbohossou  et 
al., 2018; Cope  et al., 2012; Costion  et al., 2011; 
Schippmann et al., 2006; Techen  et al., 2004; 
Mohammadi & Prasanna, 2003; Schippmann et 
al., 2011,  and Colpaert et al., 2005). Molecular 
approach is one of the right and fast ways that 
can be done to determine genetic potential, one of 
them is through the use of PCR (Polymerase 
Chain Reaction)-based method. 

Identification of DNA sequence-based species 
is a method that is considered fast, accountable, 
and consistent, thus, it is important in 
conservation biology and diversity research 
(Waugh, 2007). Identification with DNA sequence 
is carried out using molecular markers. One of the 
molecular markers currently used in expressing 
taxonomy is DNA barcoding which is a short DNA 
sequence that can show genetic variation in a 
species (Siccha  et al., 2018; Baetscher  et al., 
2018; Freed et al., 2018; Manzanilla  et al., 2018; 
Badotti  et al., 2018; Porter & Hajibabaei, 2018; 
Hongsanan et al., 2018; Mills et al., 2017; Allio et 
al., 2017; Yang et al., 2017;  Therkildsen et al., 
2017, and Chippindale et al., 1999). In the DNA 
Barcoding process, certain genes can be used as 
markers in the genetic division of species and 
phylogenetic reconstruction (Yan et al., 2018; 
Krehenwinkel et al., 2018; Thézé et al., 2018; 
Manzanilla et al., 2018; Raj et al., 2018; Song et 
al., 2018; Kress & Erickson, 2007; Newmaster  et 
al., 2006; Pons  et al., 2006; Kress et al., 2005, 
and  Hebert, 2004). 

Phylogenetic trees are used to see and 
determine kinship/ genetic relationships based on 
genetic proximity between organisms based on 
analysis of certain genes. In this case, genes that 
are often used are matK (Maturase within trnK 
intron), rbcL (ribulose-1,5-bisphosphate 
carboxylase) and tnrL (tRNA-Leucosine (UAA) 
5’exon intron).This research aims to analyze the 
sequence variation of matK rbcL, tnrL genes and 
to construct phylogenetic trees in bebara plant 
based on differences in growing places (padang 
and natai) in Sukamara Regency, Central 
Kalimantan. 
 
MATERIALS AND METHODS 

 Figure 1, DNA analysis began by extracting 1 
gram of total small pieces of young bebara leaf 

which was soaked in 100% ethanol for 1 day, 0.25 
gram of leaves was weighed and isolated using 
CTAB extraction buffer by using the doyle and 
doyle method (1987). 

The homogenate was then added with 20µl β-
mercaptoethanol and then incubated at 65°C for 1 
hour. The homogenate was centrifuged at a 
speed of 13000 rpm for 10 minutes at room 
temperature to form pellets and supernatants. The 
supernatants were transferred to a 1.5 ml tube 
and added with a PCI solution (Phenol: 
chloroform: isoamylalcohol) with a ratio of 25:24:1 
as many as 1:1 with supernatant and vortex 
volume until it became homogeneous. The 
homogenate was centrifuged at a speed of 13000 
rpm for 10 minutes at room temperature, then the 
supernatants were transferred to a new 1.5 ml 
tube and added with ethanol absolute 2.5 times of 
supernatant volume. The solution was then 
incubated at -20°C for 1 hour or overnight. The 
solution was centrifuged at 13000 rpm for 10 
minutes at 4°C to form pellets and supernatants. 
Supernatants were discarded and pellets were 
added with 500 μl of 70% ethanol. Then the 
pellets were centrifuged at a speed of 13000 rpm 
for 10 minutes at 4°C. Next, 70% ethanol solution 
was discarded and the pellets were dried at 55°C. 
The pellets were added with 50µl of TE buffer pH 
7.5. 
 
Visualization of DNA Isolation Results and 
PCR Results 

A total of 0.15 grams of agarose was added 
with 15 ml of 1x TBE pH ~8.3 solution in the 
Erlenmeyer tube and it was heated until boiling. 
Then leave it at room temperature to a 
temperature of around 50°C and then it was 
added with 1 µl of Ethidium Bromide. Next, the 
solution was poured into a mold that has been 
installed with a comb. After the gel became solid, 
then the comb was pulled. Then, it was inserted 
into the electrophoresis chamber containing a 1x 
TBE pH ~8.3 solution. A total of 2 µl of DNA was 
inserted into the well. Then, it was run at a voltage 
of 50 volts for 30 minutes. The gel was then 
visualized on the UV transiluminator and 
photographed using a camera. The same was 
done to visualize the PCR results with the use of 
0.3 grams of agarose. 
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Figure 1. DNA Isolation Process (Dioxyribose Nucleic Acid) 

Description: 
 

1. 1 gram of bebara leaves was weighted and soaked in 100% ethanol for 1 day 
2. Homogenate with CTAB extraction buffer 
3. Incubated at 65°C for 1 hour 
4. Added with 20µl β-mercaptoethanol 

     5.  Centrifuges at a speed of 13000 rpm, take only the supernatants 
 
PCR sample 

PCR was conducted to the total DNA of 
isolation results by using the primers of matK 
(5`CGATCCTTTCATGCATT-3 and 5’-
ATCTGGGTTGCTAACTCAATG-3, rbcL (5’- 
ATGTCACCACAAACAGAGACTAAAGC-3’ and 
5’-TCGCATGT ACCTGCAGTAGC-3’) and tnrL 
(5’-CGAAATCGGTAGACGCTACG-3’ and 5’-
GGGGATAGAGGGACTTGAAC-3’).  
The composition of the PCR reaction consisted of 
2 µl of dH2O, 1 µl of forward primer (10 µM), 1 µl 
of reverse primer (10 µM), 5 µl of Intron 
Mastermix and 1 µl of DNA. The composition was 
inserted into the PCR tube and run on the PCR 
machine with the following PCR program : 
predenaturation with a temperature of 94°C for 5 
minutes then followed by 35 cycles, with 
denaturation with a temperature of 94°C for 30 
seconds, annealing with a temperature of 55°C for 
30 seconds and extension with a temperature of 
72°C for 30 seconds, then followed by the final 
extension with a temperature of 72°C for 10 
minutes. The amplification results were then 
stored at -20°C and sequenced at FirstBase 
Laboratories Sdn Bhd Selangor, Malaysia. 

 
Statistical analysis 

Sequencing results were analyzed using a 
sequencer scanner and the data was entered in 
fasta format and analyzed using Bioedit and 
phylogenetic trees formed by the Maximum 
likelihood method. The genetic distance was 
calculated using the Kimura's 2-parameter method 
integrated in the MEGA6 software developed by 
Tamura et al., (2013). 
 
RESULTS  

Local people call this medicinal plant as 
“bebara” which is believed to be hereditary to 
restore health and increase the production of 
breast milk (ASI). Scientifically, there is no 
information about the identification of these types 
of bebara plant and it is only known by local 
people. Its scientific/latin name was obtained by 
sending herbarium samples to UPT Balai 
Konservasi Tumbuhan Kebun Raya Purwodadi 
(Technical Implementation Unit for Plant 
Conservation Center of Purwodadi Botanical 
Garden), bebara medicinal plant is classified as 
follows: 

Division  : Magnoliophyta  

Description: 
1. Addition of binding buffer  5. Drying 
2. The bound DNA                           6. Addition of elution buffer 

3. Addition of washing buffer 1         7. Purified genomic DNA 

4. Addition of washing buffer 2 

Source: (Indhina Reihannisa, 2017) 

 

 

 

gDNA Extraction 
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Family  : Rubiaceae  
Class  : Magnoliopsida  
Genus  : Timonius sp 
Subclass : Asteridae   
Species  : Timonius sp. 
Order  : Rubiales 
Furthermore, the herbarium sample was also 

sent to LIPI (Indonesian Institute of Sciences) 
“Herbarium Bogoriensi”, the Botanical Field of 
Biology Research Center, in which it obtained the 
following results: 

 
Family  : Rubiaceae 
Species  : Timonius flavescens 

(Jacq.) Baker 
Accurate species identification using 

traditional methods can take a long time due to a 
lack of data and information about plants. 
Molecular approach is one of the right and fast 
ways that can be done to determine genetic 
potential. One of them is through the use of PCR 
(Polymerase Chain Reaction)-based methods. 

Molecular Characterization 
Molecular characters are very useful in 

determining the taxonomy of plants. Some studies 
make plant phylogenetic trees based on molecular 
characters and combine them with morphological 
data. based on research of Magallonet al., (2018); 
Kusuma et al., (2018); Braukmann et al., (2017); 
Azani et al., (2017); Kawahara et al., (2017); Wu 
et al., (2006);  Bremer  et al., (1999); Bremer  
(1996),  and  Robbrecht & Manen (20006) that 
Family of rubiacea is a large family of 
angiosperms which even though it is easily 
recognizable, it is difficult to classify. In addition, 
there is the existence of intrafamilial phylogeny 
(Bremer, 1996). Timonius is included in the genus 
of guetttardeae and family of rubiaceae (Costion 
et al,. 2016). The results of isolation using the 
modified method of doyle and doyle (1987) are 
shown in Figure 2. From the DNA isolation results, 
then the DNA of bebara padang and bebara natai 
were amplified using matK, rbcL and tnrL genes 
shown in Figure 3. Based on DNA test results 
using the primers of matK , rbcL, and tnrL from 
the steps above, it obtained the following results. 

Whole genomic and PCR results 
The results of total DNA amplification using 

1% agarose showed that the whole genomic DNA 
of bebara natai and bebara padang in figure 2 
was greater than 1000 basepair. Figure 3 shows 
that the amplicon length of the primers of matK 
(matK-F 5´-TAATTTACGATCAATTCATTC-

3´,matK R5´GTTCTAGCACAAGAAGTCG-3´) was 
1000 bp; the amplicon length of the primer of rbcL 
(rbcL1b: 5`-ATGTCACCACAAACAGAAAC-3` and 
rbcL-724R: 5`-TCGCATGTACCTGAGTAGC-3`) 
was 700 bp the amplicon length of the primer of 
tnrL (5’-CGAAATCGGTAGACGCTACG-3’ and 5’-
GGGGATAGAGGGACTTGAAC-3’) was 400 bp. 

DNA barcoding in plants involves sequences 
of mitochondrial or chloroplastic genomes using 
reference sequences from the database. The 
database can be obtained from gene banks (http: 
www.ncbi.nlm.nih.gov) and BOLD 
(www.Boldsystem.org). DNA sequences have a 
high similarity in species when compared and 
there are more variations in nucleotide 
composition for different species. The findings of 
the research conducted by Yan et al., (2018); 
Dormontt  et al., (2018); McManus et al., (2018); 
Fitzpatrick  et al., (2018); Epp  et al,. (2018); 
Feliner& Rosselló (2007); Qiu  et al., (1999) and 
Palmer  (1992) show that study of plants through 
variations in DNA sequence of chloroplasts, 
mitochondria and core DNA is very useful to 
determine the systematics of plants. Plant 
systemic gene sequences such as rbcL, matK and 
tnrL can be used as markers to identify plants 
(Vannozzi et al., 2008,  and Wahyudi et al., 2013). 
matKgene is an ideal gene for determining plant 
taxonomy because it has a very high substitution 
rate, a very large level of base nucleotide variation 
and has a very low transition/transversion level. 
Currently, the matK gene has been used as an 
important tool for examining intraspecies and 
interspecies genetic diversity because it has a 
high substitution rate (Mader et al., 2018; 
Chrungoo  et al., 2018; Schwarz  et al., 2017; 
Khederzadeh  et al., 2017; Dizkirici  et al., 2018; 
Nowicki  et al., 2018; Olmstead  et al., 2018; and 
Yao et al., 2010, Hollingsworth et al., 2011; and 
Selvaraj et al., 2008). matK gene (Maturase K), is 
a chloroplast gene measuring around 1500 base 
pairs (bp) located in trnKintrons (Selvaraj et al., 
2008). 

Marquina  et al., (2018); Tabssum et al., 
(2018); Xu,  eta al., (2018) and Weger et al., 
(2018) show that determination of barcoding 
among plant species has several problems. For 
example, in some cases, DNA barcoding is 
incapable to act as a means of identification and 
there is a difficulty in determining the history of a 
species that has an impact on the rate of 
molecular evolution. Therefore, in determining the 
barcoding of a species, the combination of several 
genes in determining the tested species is very 
important (Kress et al., 2009). 
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Figure 2. Whole genomic DNA sample of bebara natai (1) and bebara padang (2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Amplification results of bebara natai and bebara padang by using tnrL gene(1&2), rbcL 
gene (3 & 4) and matK gene (5&6) 

 
 

 
 
Figure 4. Results of nucleotides alignment of bebara natai and bebara padang using matK gene 
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Figure 5. Results of nucleotides alignment of bebara natai and bebara padang using rbcL gene 

 

 
Figure 6. Results of nucleotides alignment of bebara natai and bebara padang using tnrL gene 

 
The alignment between the sequences of 

bebara natai and bebara padang habitats using 
the matK, rbcL and tnrL genes can be seen in 
Figures 4, 5 and 6. 

The picture above shows that in the alignment 
of bebara natai and bebara padang using the 
matK gene, there was a change in Guanine (G) to 
Thymine (T), Cytosine (C) to Adenine (A), 
Cytosine (C) to Thymine (T), Adenine (A) to 
Thymine (T), and Thymine (T) to Adenine (A). 
Alignment results with the rbcL gene contained 
base changes in Adenine (A) to Guanine (G), 
Cytosine (C) to Thymine (T), Guanine (G) to 
Thymine (T) and there was Cytosine (C) base 
insertion on bebara padang. Alignment with the 
tnrL gene contained base changes in Thymine (T) 
to Adenine (A) and the base of Guanine (G) to 
Adenine (A). matK gene can be used to identify 
these plants because they have a greater variety 
of nuleotides when compared with tnrL and rbcL 
genes. High nucleotide variations in nucleotide 
sequences can be used to determine variations in 
one genus or family of plant. In the nucleotide 
sequence, there are conserved regions and 
mutated regions where conserved areas will be 
relatively stable in plants and passed on to their 
offspring/ descendant. 

Taxonomic studies on plants can use DNA 

sequences. The characterization of plastid genes 
such as the rbcL gene that encodes a large 
subunit of ribulase biphosphate carboxylase 
(Rubisco) which is located in the chloroplast 
genome and its functions as a photosynthetic 
gene is very important in knowing plant 
photosynthesis patterns (Sun et al., 2016; 
Savolainen and Chase, 2003). 

Phylogenetic tree 
The phylogenetic tree is a logical approach to 

show the evolutionary relationship between 
organisms (Williams, 2018; Strelin  et al., 2018; 
Faith, 2018; Quintero et al., 2018; Schweiger et 
al., 2018; Schmidt, 2003, and Woese et al., 1990). 
Phylogenetics is interpreted as a model to 
represent ancestrall organism relations, molecular 
sequences or both (Washburne et al., 2018; Tan 
et al., 2018; Cibois et al., 2018; Li et al., 2018, and 
Brinkman and Leipe, 2001). One of the objectives 
of phylogenetic preparation is to properly 
construct relationships between organisms and 
estimate differences that occur from one ancestor 
to offspring/ descendant (LI et al., 1999). 

The results of the phylogenetic tree using the 
matK gene showed that bebara padang and 
bebara natai were grouped in family of rubiaceae 
(Figure 7).  
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Figure 7. Phylogenetic tree of bebara natai and bebara padang with matK gene using maximum 
likelihood and Tamura-nei approach 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Phylogenetic tree of bebara natai and bebara padang with rbcL gene using maximum 
likelihood and kimura-2 parameter model 
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Figure 9. Phylogenetic tree of bebara natai and bebara padang with tnrL gene using maximum 
likelihood  and kimura-2 parameter model 

 
By using pairwise distance values, it obtained 

the results that bebara natai had a genetic 
distance value of 0.001 with Chomelia 
brachypoda, Timonius subauritius, Timonius 
mollis, Timonius korrensis and Timonius selsedoi. 
On the other hand, bebara padang had a genetic 
distance value of 0.017 with Chomelia 
brachypoda, Timonius subauritius, Timonius 
mollis, Timonius korrensis and Timonius selsedoi.  

 Figure 8, The genetic distance value of 
bebara  padang and bebara natai was 0.016. The 
data of genetic distance from bebara natai and 
bebara padang by using the rbcL gene of bebara 
natai had a genetic distance value of 0.004 with 
Timoniusmollis, Timoniusselsedoi, 
Timoniussubauritius, Hodgkinsonovatiflora, 
Antirhea sp., Antirheamegacarpa and 
Bobeamyrtoides.In bebara padang, it had a 

genetic distance value of 0.002 with 
Timoniusmollis, Timoniusselsedoi, 
Timoniussubauritius, Hodgkinsonovatiflora, 
Antirhea sp., Antirheamegacarpa and 
Bobeamyrtoides. The genetic distance value of 
bebara natai and bebara padang was 0.006. 

Figure 9, The genetic distance value of 
bebara natai and bebara padang by using tnrL 
gene, bebara natai had a genetic distance value 
of 0.000 with Chomelia spinosa, Timonius timon, 
Ottoschmidtia microphylla, Hodgkinson ovatiflora, 
Guettardella inconspicua, Guettarda ferruginea, 
Guettarda acreana, Guettarda preneloupii and 
Guettarda camagueyensis. Bebara padang had a 
genetic distance of 0.004 with Chomelia spinosa, 
Timonius timon, Ottoschmidtia microphylla, 
Hodgkinson ovatiflora, Guettardella inconspicua, 
Guettarda ferruginea, Guettarda acreana, 
Guettarda preneloupii and Guettarda 
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camagueyensis. The genetic distance value of 
bebara padang and bebara natai was 0.004. 
According to Johansson et al., (2018); 
Hendrickson  et al., (2018), and Tallei et al., 
(2016); that  the smaller the genetic distance 
value between the two organisms, the closer the 
relationship between them is. 

Phylogenetic results based on the matK, rbcL 
and tnrL gene showed that the use of the matK 
gene in identification of bebara padang and 
bebara natai using the Maximum likelihood tree 
construction with the kimura-2 parameter model 
with 1000 bootstrap value formed a separate 
branch with confident level of 53%. In the 
phylogenetic tree using the matK gene, there 
were two large clusters with confident level of 
75%. The rbcL gene can be used for phylogenetic 
analysis in the family and subclasses of 
angiosperms and seed plants (Kang et al., 2017). 

CONCLUSION 
The resulting analysis of sequence variation 

shows a difference between bebara padang and 
bebara natai. The analysis results of the matK 
gene reveals 5 nucleotide differences; the rbcL 
gene has 3 nucleotide differences and there is a 
cytosine (C) base insertion on bebara padang; 
and the tnrL gene has 2 nucleotide differences. 
MatK gene is used to identify this plant because it 
has more nucleotide variations than the tnrL and 
rbcL genes. Phylogenetic tree with matK gene 
using the Maximum likelihood tree construction 
with the kimura-2 parameter model with 1000 
bootstrap value forms a separate branch with 
confident level of 53%. In the phylogenetic tree 
using the matK gene, there are two large clusters 
with confident level of 75%. It shows that bebara 
padang and bebara natai are grouped in the 
family of rubiaceae. By using pairwise distance 
values, it obtains the results that bebara natai has 
a genetic distance value of 0.001 with Chomelia 
brachypoda, Timonius subauritius, Timonius 
mollis, Timonius korrensis and Timonius selsedoi. 
On the other hand,bebara padang has a genetic 
distance value of 0.017 with Chomelia 
brachypoda, Timonius subauritius, Timonius 
mollis, Timonius korrensis and Timonius selsedoi. 
The genetic distance value of bebara padang and 
bebara natai is 0.016. 

 
RECOMMENDATION 

This study recommends the importance of 
further research on species identification, plant 
morphological characteristics, the content of 
bioactive compounds and cultivation efforts 

conducted so that local knowledge of the society 
which empirically hereditary are believed it thruth 
and scientifically proven to contain bioactive 
compounds that are beneficial to health. 
Morphology characteristics identification in the 
future will be useful to the community of users in 
order to get to know this plant so that it is not 
wrong to use it. Cultivation is carried out as a 
conservation effort towards the preservation of 
this plant which is starting to be difficult to find 
around forest areas caused by land fires and the 
conversion of forest land into other uses such as 
oil palm plantations. 
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