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Cordia dentate was introduced to Egypt as ornamental and timber trees in the beginnings of                
the 19th Century.  Urbanization is responsible for disappearance of many plant species including C. 
dentata that are represented with only two trees exhibiting different morphological characteristics. The 
present study aimed to authenticate these trees using rbcl- and matk-based DNA barcoding as well as 
ISSR markers. Results reflected that matk and rbcl sequences for both trees were 100% identical and 
showed 100% similarities with corresponding sequences recorded for C. dentate in BOLD System and 
Gene Bank. Nine ISSR primers, out of ten, reflected polymorphism between the two trees. Thus it is 
recommended to use DNA barcoding in species identification then ISSR for further intraspecific 
resolution. 
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INTRODUCTION 

Biodiversity is a general term used to describe 
the sum of all life’s varieties in a defined location 
or even across the whole planet. It occurs at 
ecosystem, species and genetic levels (Glowka et 
al., 1994). Plant biodiversity is a major source for 
food and drug and constitutes a natural reservoir 
for genetic raw material essential for breeding 
programs of many important crops (Rao, 2004). 
However, the human activities associated with 
over-usage of plant resources in parallel with the 
over-production of pollutants exaggerate the rate 
of plant extinction reaching one species per day 
(Hilton-Taylor, 2000). 

The Egyptian territories host 2088 species 
belonging to 742 genera of 120 families (Khedr et 
al., 2002). Cordia L. (family Cordiaceae) is a large 
pantropical genus including about 300 species of 
trees and shrubs, distributed in Africa, South Asia 
and tropical America (Mabberley, 2008). In the 
Egyptian flora, Cordia was monospecific genus 
represented by C. sinensis (El Hadidy and Boulos, 

2009).  
Along with another seven Cordia species, C. 

dentata was introduced to Egyptian gardens in the 
beginnings of the 19th Century as ornamental and 
timber trees (Ascherson and Schweinfurth, 1887; 
Delchevalerie, 1899; Bircher and Bircher, 2000; 
Diwan et al., 2004; Hamdy, 2010). C. dentate is 
also rich in valuable compounds (eg: Rosmarinic 
acid, Quercetin, 3-o-rutinoside and Rutin) 
important for treatment of many human diseases 
(Thirupathi et al., 2008; Hossan et al., 2014; 
Wang et al., 2015; Ganeshpurkar and Saluja, 
2017). The growing urban activities have 
demolished many gardens and are responsible for 
disappearance of many plant species. 
Consequently, C. dentata in Egypt is represented 
with only two individuals growing in zoological 
garden; the first is typical C. dentata while the 
second is C. dentata form (Amer et al., 2016). 

Identification and characterization of 
endangered plant species is a prerequisite to 
maintain biodiversity (Bapat et al., 2012). 
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Traditional approaches employing morphological 
features require taxonomic expertise and usually 
suffer from subjective biases (Costion et al., 
2011). Chromatographic profiles also have some 
limitations being affected with plant age, tissue 
source, physiological conditions and 
environmental factors (Joshi et al. 2004; Zhang et 
al., 2007). On the other hand, DNA based 
markers can be used to characterize biodiversity 
without fear from the previous sources of error 
(Bafeel et al., 2012).   

An arsenal of non-sequence based molecular 
markers are available for biodiversity 
documentation, the most common of which are 
fragment length polymorphisms (RFLP), amplified 
fragment length polymorphism (AFLP), simple 
sequence repeats (SSR), inter simple sequence 
repeats (ISSR) and randomly amplified 
polymorphic DNA (RAPD) (Ganie et al., 2015 for 
review). RAPD and ISSR are free of many 
limitations facing other markers; they are time, 
labor and cost effective and do not necessitate 
prior information about sequences of the target 
organism genome (Muzila et al., 2014). However, 
the longer primers used in ISSR, compared with 
RAPD ones, make it more specific with higher 
stringent amplifications (Wolfe et al., 1998). In 
addition, the abundance of target sequences with 
high evolution rate for ISSR primers helps in 
revealing more polymorphic loci, compared with 
RAPD (Ansari et al., 2012).  

DNA barcoding provides another arsenal of 
molecular markers that are now regularly used for 
biodiversity inventories (Costion et al., 2011; de 
Vere et al., 2012).  It can be defined as employing 
of short uniform nuclear or organelle DNA 
sequences (400-800bp) for the identification of 
different taxa (Ganie et al., 2015). The slow 
substitution rates and intramolecular 
recombination exhibited by plant mitochondrial 
DNA (Mower et al., 2007) in addition to the 
numerous recorded cases of incomplete 
concerted evolution of the internal transcribed 
spacers (ITS) in plants (Chase et al., 2005; Kress 
et al., 2005) put plastid sequences as front 
runners in plant DNA barcoding (Hollingsworth, 
2008). 

Considering sequence quality, recoverability 
and levels of species discrimination, the 
Consortium for the Barcode of Life (CBOL) plant 
working group recommended employing rbcl 
and/or matK in barcoding of land plants (CBOL 
Plant Working Group, 2009). rbcl is considered as 
universal barcode due to its high amplification 
success rate but it has low discriminatory 

potential. Conversely, matk gives better resolution 
but with some amplification concerns (Laiou et al. 
2013). It recommended to use a combination of 
these two markers for better results (Ganie et al., 
2015). 

The aim of this study is to authenticate the C. 
dentata trees growing in Egypt and characterize 
the differences between typical C. dentata and C. 
dentata form using ISSR markers along with DNA 
barcoding using rbcl and matk sequences. 
 
MATERIALS AND METHODS 

          Total genomic DNA was extracted from 
about 20 mg liquid nitrogen powdered leaf tissues 
collected from each of typical C. dentata and C. 
dentata form  trees  with aid of Qiagen DNeasy kit 
(Valencia, California, USA), following the 
manufacturer’s protocols.  

PCR amplifications were carried out using 17-
19 base primers (Table 1) selected based on their 
ability to produce clear reproducible banding 
pattern. The reaction mixture comprised of 25 μl 
containing one unit Taq polymerase (Promega, 
WI, USA), 30 pmol of primer, 0.5 μl dNTPs (10 
mM), 30 ng template DNA and 1.5 μl MgCl2 (25 
mM). The amplification protocol was initial 
denaturation of 2 min at 94°C; 40 cycles of 30 Sec 
denaturation at 94°C,  30 Sec annealing at 50°C 
and 2 min extension at 72°C; and final elongation 
step at 72°C for 7 min. PCR products were 
resolved in 1.5% (m/v) agarose gel and visualized 
under UV light. Band size was determined using 
Gel-Doc XR (Bio-Rad) based on 100 bp DNA 
ladder. Only bands appeared in three PCR 
amplifications were scored. 

For matk, and rbcl PCR amplifications were 
conducted following CBOL Plant Working Group 
(2009) employing specific primers (Table 1) in a 
total volume of 50 µl containing about 50 ng 
genomic DNA, 1 µl of each primer and 25 µl PCR 
Master Mix (Bioline). The amplification protocol for 
rbcl was 95℃ for 2 min followed by 34 cycles of 

94℃ for 1 min, 55℃ for 30 sec and 72℃ for 1 min, 
then final extension for 7 min at 72℃. matk 

protocol started with 5 min at 94 ℃ then 26 cycle 

of 94℃ for 1 min, 48℃ for 30 sec and 72℃ for 1 
min. The final extension step lasted for 7 min at 

72 ℃. 
Amplicons for rbcl and matk were subjected to 

purification step employing the QIAquick PCR 
Purification Kit (Qiagen, Hilden, Germany) before 
sequencing using Big-dye terminator chemistry in 
3130xl Genetic Analyzer (Life Technologies, 
California, USA) according to the standard 
manufacturer's protocol. 
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Table 1. Primer sequences 

Maker Primer Sequence 

ISSR 

ISSR- 1 5'-AGAGAGAGAGAGAGAGYC-3' 

ISSR- 2 5'-AGAGAGAGAGAGAGAGYG-3' 

ISSR- 3 5'-ACACACACACACACACYT-3' 

ISSR- 4 5'-ACACACACACACACACYG-3' 

ISSR- 5 5'-GTGTGTGTGTGTGTGTYG-3' 

ISSR- 6 5'-CGCGATAGATAGATAGATA-3' 

ISSR- 8 5'-AGACAGACAGACAGACGC-3' 

ISSR- 9 5'-GATAGATAGATAGATAGC-3' 

ISSR- 10 5'-GACAGACAGACAGACAAT-3' 

ISSR- 11 5'-ACACACACACACACACYA-3' 

rbcl 
1f 5'-ATGTCACCACAAACAGAAAC-3' 

724r 5'-TCGCATGTACCTGCAGTAGC-3' 

matk 
390F 5'-CGATCTATTCATTCAATATTTC-3' 

1326R 5'-TCTAGCACACGAAAGTCGAAGT-3' 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Twig with leaves and inflorescence of Cordia dentata, taken from Cairo University 
Herbarium (CAI), A: Typical, Zoological Garden (1965); B: Form, Orman Garden (1963). 
 

 Using Codon Code Aligner software, v. 
7.1.2., forward and reverse sequences for each 
locus were assembled and contig sequences 
were used in next steps. For each locus, 
sequences were aligned using multiple sequence 
alignment (multalin) (Corpet, 1988, 
http://multalin.toulouse.inra.fr/multalin) for 
comparison. All sequences were identified using 
BOLD (Barcode of Life Database) System 
(www.boldsystems.org) and blasted using Basic 

Local Alignment Search Tool (BLAST) 
(http://blast.ncbi.nlm.nih.gov/Blast.cgi) against 
corresponding sequences deposited in Gene 
Bank. 
 
RESULTS AND DISCUSSION 

Morphological characters (Figure 1) 
A small to medium-sized, semi-deciduous 

tree, up to 12 m high, much branched, with fibrous 
light-brown bark; bole seldom straight, and without 

A B 
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buttresses. Young vegetative parts puberulent to 
densely pubescent with white indumentum. 
Leaves alternate, broadest part at the middle or 
above; blade ovate, suborbicular to obovate rarely 
elliptical, light green in color, 3-7  cm long, 2-5.5 
cm in diameter, 3-7 x 2-5.5 cm, less than one and 
half times as long as broad; apex obtuse to 
rounded; base broadly obtuse or rounded; margin 
sub entire to dentate; upper surface scabrous with 
long white hairs arise from a cystolith, lower 
surface pubescent, tawny hairs intermingled with 
ferruginous indumentum especially along the 
midrib and veins; midrib prominent below and flat 
above; secondary veins 3-5 pairs, the basal pair 
reaching the margin at or below the middle of the 
lamina; petiole terete to slightly grooved, 1-3 cm 
long, shorter than the leaf blade, a ppressed-
pubescent with ferruginous indumentum. 

Inflorescence lax, terminal cymose, less 
divaricately branched, 10-30 flowered; peduncle 
1.5-3.5 cm long, flower buds 2-3.5 cm long, ovate, 
sessile; calyx campanulate, 10(-12) ribbed, 
sparsely strigose, 2-3.5 mm long, circumcissile 
and open somewhat unevenly. 

Corolla yellow, 8-12 mm long, obovate with 
emarginated apex; stamens 5(-6), 5-9 mm long; 
filaments glabrous, 5-7 mm long, hairy at base 
anther oblong, 1-2 mm long. Gynoecium -5.5 mm 
long; ovary ovoid, 1-2 mm long; style included 2.5-
6 mm long; stigma lobes clavate, 0.5 mm long. 
Fruit drupe, translucent white borne on a cup-
shaped calyx, ovoid with apiculate apex, 9-13 mm 
long, 6-8 mm in diameter; pyrene ellipsoid, 811 
mm long and 4-5 in diameter. 

Morphological description of the closely allied 
form revealed notable variation from the typical C. 
dentata distinguished by its lamina elliptic rarely 
ovate, dark green in colour, 4-11 x 2.5-7 cm, 1-2 
times as long as broad; apex acute to apiculate; 
base broadly cuneate; margin dentate rarely 
subentire, the basal pair reaching the margin 
above the middle of the lamina. In addition to, the 
inflorescence is dense, much divaricately 
branched; 30-60 flowered and the corolla is white 
with yellow throat. 

Both trees differ in many features of external 
morphology including, leaf shape, size, L/W ratio, 
colour, apex, base and margin. This result is 
aligned with the observation of Johnston (1948) in 
some Cordia species among which C. toqueve 
Abl. and C. macrophylla, Critchfield (1960) in 
Populus trichocarpa, Smith (1967) in Liquidambar 
styraciflua L. and, Deschamp and Cooke (1985) in 
Callitriche heterophylla.  

As well, Al-Turki and Thomas (2010) and 

Johnston (1948) stated that floral dimorphism was 
observed in Moltkiopsis I.M.Johnst. and Cordia 
diversifolia, respectively. This is in line with our 
study that reflects variation in inflorescence and 
flower colour. So the results confirm the presence 
of two different forms in Cordia dentata. 

Molecular analyses 
The potential of ISSR analysis was used to 

assess genetic variation between typical C. 
dentata and C. dentata form. A total of 73 bands 
were generated using 10 primers with an average 
of 7.3 band per primer (Figure 2 and Table 2). 
Each primer produced a unique banding pattern of 
4 (using ISSR 4) to 12 (using ISSR 1) amplicons. 
Both trees showed the same amplification 
products using ISSR 2. Otherwise, each primer 
revealed a unique characteristic banding pattern 
for each tree with a total of 28 polymorphic bands 
(38.4% polymorphism). ISSR 8 exhibited the 
highest discrimination between typical C. dentata 
and C. dentata form. Among 6 bands it produced, 
5 (83.33%) were polymorphic suggesting that this 
primer amplifies genetically unstable 
hypervariable regions (Hollingsworth et al., 1997). 
On the other hand, ISSR 9 had the lowest 
discriminatory potential where it revealed only 
20% polymorphism between both trees. 

 In the available literature, only Brito et al., 
(2016) studied intraspecific genetic variation in 
Cordia employing ISSR analysis. Compared with 
our results, the authors recorded higher 
intraspecific variation designated with about 93% 
polymorphism using 14 ISSR primers in C. 
verbenacea. High % polymorphism was also 
recorded in apricot (Kumar et al., 2009), 
Achilleatenuifolia (Rahimmalek, 2012), 
Daemonorops draco (Asra et al., 2014), Croton 
tetradenius (Almeida-Pereira et al., 2017) and 
strawberry (Kaleybar et al., 2018). However, the 
smaller intraspecific genetic variation recorded in 
this study can be explained by presence in small 
geographic range (Liu et al., 2013). 

Bidirectional sequences for both rbcl and matk 
for typical C. dentata and C. dentata form tress 
were obtained. In both trees, matk sequence 
length was 641 bp while rbcl was 501 bp. 
Identifications for both sequences of both tress 
showed 100% similarity to the corresponding C. 
dentata sequences deposited in BOLD system 
and Gene Bank data bases (Figures 3 and 4) 
reflecting validity of DNA barcoding using such 
loci at species level.  
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Figure 2. ISSR banding patterns of typical Cordia dentata (T) and C. dentata form (F) using 10  
primers. 

 
 

Table 2. ISSR analyses of typical Cordia dentata and C. dentata form. 
 

Primer Total No.  
of bands 

Monomorphic  
bands 

Polymorphic 
 bands 

% of 
polymorphim 

ISSR- 1 12 9 3 25.00 

ISSR- 2 9 9 0 0.00 

ISSR- 3 7 4 3 42.86 

ISSR- 4 4 3 1 25.00 

ISSR- 5 8 6 2 25.00 

ISSR- 6 7 3 4 57.14 

ISSR- 8 6 1 5 83.33 

ISSR- 9 5 4 1 20.00 

ISSR- 10 9 2 7 77.78 

ISSR- 11 6 4 2 33.33 

Total 73 45 28 38.36 
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Figure 3. matk-identification of typical Cordia dentata and C. dentata form using BOLD System (A) 
and  Gene Bank data bases (B). 

 
 
 

(A) 

(B) 
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Figure 4. rbcl-identification of typical Cordia dentata and C. dentata form using BOLD System (A) 
and  Gene Bank data bases (B). 

 
 
 
 
 
 

(A) 

(B) 
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Figure 5. Multalin-based sequence alignment for matk (A) and rbcl (B) sequences of typical Cordia 
dentata and C. dentata form. 

 
However, multalin sequence alignments for 

each of rbcl and matk sequences showed that 
both typical C. dentata and C. dentata form tress 
are 100% identical (Figure 5) suggesting recent 
divergence of C. dentata form (Kerr et al., 2007) or 
divergence from a strong common genetic basis 
(Baraket et al., 2011). 

Similar failure of DNA barcoding in 
characterization of intraspecific variation was 
recorded in Cordia macleodii (Deb et al., 2018) 
and several species including Panax 
notoginseng (Zhang et al., 2006), Phaseolus 
species (Nicolè et al., 2011), Sansevieria 
trifasciata (Tallei et al., 2016) and Codia 
eumvariegatum (Nio et al., 2018). On the other 
hand, DNA barcoding was used successfully to 

monitor intraspecific variation in Phoenix 
dactylifera (Enan  and   Ahmed, 2014) and Ficu 
scarica (Castro et al., 2015). These contradictory 
literatures suggest the influence of species 
genotype on efficiency of DNA barcoding in 
resolving intraspecific variation. 

CONCLUSION 
In conclusion, matk- and rbcl-based DNA 

barcoding are efficient tools for identification of C. 
dentata. However, both sequences are not 
variable enough to resolve different forms of such 
species even in presence of morphological 
differences. ISSR is a potent molecular marker 
able to produce sufficient polymorphism to fine 
resolve intraspecific genetic variation. Thus it is 
recommended to use both molecular approaches 
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to authenticate C. dentata in Egypt, DNA 
barcoding for identification at species level and 
ISSR for characterization of intraspecific 
variations. 
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