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Rice (Oryza sativa) is one of the major staple foods for about 70% of the world population. Breeding 
programs for rice suffer from limited genetic diversity in cultivated rice. Estimated to be 10-20% of that in 
wild Oryza species. In silico analysis of genomes of wild species provide valuable information 
contributing effectively in development of new cultivars of better performance. CDKB1 members control 
M phase in cell cycle and involved in homologous recombination DNA repair that helps normal cell 
division under stressful conditions.  In this study, a CDKB1 gene and protein were characterized in O. 
nivara, O. sativa Indica gp, O. sativa Japonica gp, O. rufipogon, O. barthii, O. glumipatula, O. 
glaberrima, O. meridionalis, O. punctate, O. brachyantha. Only O. brachyantha that exhibited a 
considerable variation at DNA and protein levels suggesting an important future role for its genome in 
enrichment of genetic variation in cultivated rice. 
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INTRODUCTION 
Rice (Oryza sativa) is the second most 

cultivated cereal crop in the world with annual 
production of 770 million ton yielded from 167 
million ha (FAO, 2017). It is one of the major 
staple foods for about 70% of the world population 
with an excellent nutritional balance of 
carbohydrates, proteins and lipids (Balindong et 
al., 2018; Szareski et al., 2018). The increasing 
demands of rice production in addition to stressful 
environmental conditions associated with global 
climate change necessitate production of new 
varieties having better agronomic performance 
(Kilasi et al., 2018; Szareski et al., 2018).  

Among different kinases, cyclin dependent 
protein kinases (CDKs) play important control role 
for cell division through forming complexes, with 
cyclin, that phosphorylate proteins required for 
progression of cell cycle. Based on cyclin-binding 
domains, CDKs are divided into eight classes 
(CDKA – CDKG in addition to cyclin dependent 
kinases like) (Tank and Thaker, 2011). CDKB is 

plant-specific class involved in several cellular 
functions (De Veylder et al., 2007).  It is further 
divided into CDKB1 and CDKB2 having PPTALRE 
and PPTTLRE motifs, respectively (Joubes et al., 
2000). Both types are recognized in dicots while 
monocot grasses are deprived of CDKB2 (Tank 
and Thaker, 2011). CDKB1 members control M 
phase particularly during development of stomata 
(Boudolf et al., 2004; Xie et al., 2010). Recently, 
they were proved to be involved in homologous 
recombination DNA repair that helps normal cell 
division under stressful conditions (Weimer et al., 
2016). 

Only two Oryza species namely O. glaberrima 
from Africa and O. sativa from Asia are cultivated 
but unfortunately having limited genetic diversity, 
estimated to be 10-20% of that in wild Oryza 
species (Zhu et al., 2007; Palmgren et al., 2014).  
The growing efforts are going to establish 
phenotypic and DNA sequence diversity in wild 
species promising a wide range of inter- and 
intraspecific variations (Atwell et al., 2014; Li et 
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al., 2014; Yan et al., 2016) that provides a natural 
reservoir for genetic information essential for 
breeding programs (Rao, 2004). 

Starting with the 389-Mb genome of O. sativa 
ssp. japonica cv. Nipponbare completed in 2004 
(International Rice Genome Sequencing Project, 
2005), efforts supported with next generation 
sequencing (NGS) technologies established full 
genome sequences for several Oryza species. 
The resulted DNA sequences are available in 
several free sources and constitute an ore from 
which genetic information can be mined. In silico 
analysis have the advantage over wet lab-based 
techniques of being cost and time saving where it 
can be completed using open-source free data 
and software (Murray et al., 2007). This fastens 
recognition of potentially important genes required 
for genetic improvements of present rice cultivars.  

In silico analysis was employed to identify 
important genes in Oryza species including salt 
stress responsive genes (Bhati et al., 2016), 
genes encoding shikimate pathway enzymes 
(Yaqoob et al., 2016), regulatory elements of 
pathogenesis-related proteins (Kaur et al., 2017) 
and nucleotide binding site-leucine-rich repeats 
(NBS-LRR) playing  an important role in the plant 
defense systems (Rawal et al., 2018). Therefore, 
the aim of this work is to characterize CDKB1 
genes and proteins in cultivated and some wild 
Oryza species using in silico analysis. 
 

MATERIALS AND METHODS 
The amino acid sequence of cdc2 kinase 

(BAA19553.1) in Oryza sativa Japonica Group 
was downloaded from NCBI 
(http://www.ncbi.nlm.nih.gov) and targeted in 
three cultivated (O. sativa Japonica Group, O. 
sativa Indica Group and O. glaberrima) and seven 
wild (O. nivara, O. brachyantha, O. rufipogon, O. 
punctata, O. glumipatula, O. meridionalis 
and O.  barthii) Oryza species genomes in 
EnsemblPlants database (http://www. 
http://plants.ensembl.org) using BLASTP search 
tool to recognize candidate genes, coding 
sequences and location on chromosomes. 

Based on the obtained genomic and coding 
sequences, exon-intron structure of the mined 
genes was constructed utilizing Gene Structure 
Display Server website 
(http://gsds.cbi.pku.edu.cn/).Along with the 
CDKB1 genes in closest monocot grasses 
(Hordeum vulgare, Triticum aestivum and Zea 
mays) available in Gene Bank, the mined Oryza 
sequences were aligned using Clustal W. Aligned 

sequences were employed to construct a 
phylogenetic tree using Maximum Likelihood (ML) 
method in MEGA v. 6 (Tamura et al., 2013) 
according to Kimura 2-parameter model (Kimura, 
1980) with gamma distribution. Bootstrap of 1000 
replicate was used to assess significance of 
support for grouping patterns (Felsenstein, 1985). 
Retrieved amino acid sequences in different 
Oryza species were aligned using multiple 
sequence alignment (multalin) (Corpet, 1988, 
http://multalin.toulouse.inra.fr/multalin) to 
determine consensus domain and characteristic 
motif. Physico-chemical parameters of the 
candidate proteins including amino acid 
sequence, molecular weight and isoelectric points 
were determined using Expasy Protparm server 
(Gasteiger et al., 2005, 
http://us.expasy.org/tools/protparam.html). 
Subcellular localization was predicted using the 
CELLO2GO server (Yu et al., 2014). Secondary 
structure data were extracted using SOPMA (Self-
Optimized Prediction Method with Alignment) 
online tool (Combet et al., 2000, https://npsa-
prabi.ibcp.fr/cgi-
bin/npsa_automat.pl?page=/NPSA/npsa_sopma.h
tml). 3-D models for predicted proteins were 
constructed using the Phyre2 server (Kelley et al., 
2015, http://www.sbg.bio. ic.ac.uk/phyre2) and Z-
score was calculated using ProSA-web server and 
validated using (Wiederstein and Sippl, 2007, 
https://prosa.services.came.sbg.ac.at/prosa.php). 
 

RESULTS AND DISCUSSION 
Data mined reflected presence of CDKB1 

gene on chromosome 8 in all studied species 
except O. meridionalis where it was located on 
chromosome 2 (Table 1). Exon-intron structure 
analysis showed similar general structure of 6 
exons spaced with 5 intons for CDKB1 gene in all 
studied Oryza genomes (Table 1 and Figure 1). 
However, Imajuku et al., (1992) recorded CDKB1 
gene of 9 exons in Arabidopsis. On the other 
hand, Magwanga et al., (2018)  observed only 3 
exons in cotton. Such contradictory observations 
may reflect species-dependent structure for 
CDKB1 genes. 

Phylogenetic analysis showed clustering of all 
Oryza species in a major clade supported with a 
bootstrap value of 58% (Figure 2). Regarding 
relationships of wild and domesticated rices, the 
phylogenetic tree reflected that O. nivara and O. 
rufipogon are the closest species to O. sativa 
while O.  barthii is the closest species to O. 
glaberrima.  
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Table 1. Chromosome distribution and exons position on CDKB1 gene in some Oryza species. 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Species 
Chromo 

some 
Gene Size 

(bp) 

Exon 1 Exon 2 Exon 3 Exon 4 Exon 5 Exon 6 

Start End Start End Start End Start End Start End Start End 

O. nivara 8 2124 1 639 789 962 1075 1168 1258 1329 1436 1572 1735 2124 

O. sativa  Indica gp 8 2124 229 639 789 962 1075 1168 1258 1329 1436 1572 1735 1827 

O. sativa  Japonica gp 8 2124 179 639 789 962 1075 1168 1258 1329 1436 1572 1735 2017 

O. rufipogon 8 2124 139 639 789 962 1075 1168 1258 1329 1436 1572 1735 2124 

O. barthii 8 2125 179 639 790 963 1076 1169 1259 1330 1437 1573 1736 2125 

O. glaberrima 8 2126 229 639 791 964 1077 1170 1260 1331 1438 1574 1737 1829 

O. glumipatula 8 2124 155 639 789 962 1075 1168 1258 1329 1436 1572 1735 2051 

O. punctate 8 2134 159 639 808 981 1077 1170 1268 1339 1446 1582 1745 2134 

O. meridionalis 2 2125 111 639 789 962 1075 1168 1259 1330 1437 1573 1736 2125 

O. brachyantha 8 2072 229 639 782 955 1045 1138 1226 1297 1401 1537 1683 2072 
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Figure 1. Exon-intron structure of CDKB1 gene in some Oryza species. 
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Figure 2. Phylogenetic tree of CDKB1 gene in some Oryza species and the closest monocot grasses (Hordeum vulgare, Triticum 
aestivum and Zea mays) using Maximum Likelihood method based on Kimura 2-parameter model. Based on 1000 replications, 

Bootstrap values (as percentages) are listed at branching points. 
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On the other hand O. brachyantha appeared 
as an outgroup for the remaining Oryza species.  

Similar general taxonomic relations were 
recorded for Oryza species based on matk (Ge et 
al., 2002), trnL-trnF and ITS (Duan et al., 2007), 
whole chloroplast sequences (Wambugu et al., 
2015), centromeres and centromere-linked genes 
(Liao et al., 2018) and GH3 genes (Kong et al., 
2019). 

Subcellular location analysis reflected that the 
predicted CDKB1 is a nuclear protein (Table 2). 
However, Boruc et al., (2010) recorded nuclear 
and cytoplasmic localization for CDKB1 in 
Arabidopsis. The same observations were 
recorded in tobacco BY2 cells by Porceddu et al., 
(2001). The authors explained cytoplasmic 
localization by nuclear envelope breakdown 
during cell division. Retrieved amino acid 
sequences showed 302 amino acid length in all 
Oryza species with PPTALRE motif (Figure 3) 
characteristic to CDKB1 (Mészáros et al., 2000). 
Not far from these results, CDKB1 proteins of 303 
and 304 of amino acid length were recorded in 
tobacco (Sorrell et al., 2001) and Jerusalem 
artichoke (Freeman et al., 2003), respectively. 

Physiochemical properties including molecular 
weight, isoelectric point (PI) and instability index 
for all mined CDKBs were predicted (Table 2). 
Secondary structure and 3-D models were 
constructed and validated (Table 3 and Figure 4). 
A narrow range of molecular weights (from 34.58 
KDa in O. brachyantha to 34.63 kDa in O. 
punctate) and isoelectric points (8.87 in all 
species except O. brachyantha that showing PI of 
9) were recorded for the predicted CDKB1s. A 
molecular weight of 36 KDa was predicted for 
CDKB1 in Oryza sativa (Sakaguchi et al., 2006). A 
similar molecular masse of 35 KDa was recorded 
in Arabidopsis (Boudolf et al., 2001) while a higher 
mass of 37 KDa was recorded in the green alga 
Ostreococcus tauri (Corellou et al., 2005). 

Multalin-based alignment for amino acid 
sequences (Figure 3) showed identical sequences 
in O. nivara, O. sativa Indica group, O. sativa 
Japonica group, O. rufipogon, O.  barthii, O. 
glumipatula and O. glaberrima associated with 
identical physiochemical properties. Species-
dependent amino acids substitutions were 
recorded in the remaining three Oryza species 
that was more abundant in O. brachyantha.  One 
substitution (threonine / asparagine at 207 
position) in O. meridionalis and three substitutions 
(proline / serine, threonine / alanine and valine / 
leucine at 62, 165 and 187 positions, respectively) 
were characteristic for O. punctate. These 

substitutions were associated with variations in 
secondary structure parameters without 
corresponding alteration in PI or 3-D dimensions 
that may be attributed to similarity in PI of amino 
acids in each substitution (Table 3 and Figure 4). 
On the other hand, 14 amino acid substitutions 
were recorded in O. brachyantha including 
replacements of amino acids with others having 
different PI (histidine / leucine, histidine / 
isoleucine, arginine / glutamine and glutamine / 
histidine). Such replacements were accompanied 
with slight alteration in PI and more pronounced 
variations in secondary structure and 3-D 
dimensions. 

The instability index is an estimate for the in 
vitro stability of the protein. A protein having 
instability index smaller than 40 is predicted to be 
stable (Guruprasad et al., 1990) that supports the 
models predicted in this study having indices of 
28.82 (O. brachyantha) to 33.51 (O. meridionalis). 
As a measure of energy, Z-score reflected 
negative scores (- 6.88 in O. brachyantha to – 
4.02 in O. meridionalis) indicating one of the ideal 
structures corresponding to the amino acid 
sequence (Moraes Filho et al., 2017). 

CONCLUSION 
In conclusion, in silico techniques provide 

valuable, fast and cost-effective information about 
the rapidly emerging genomes of wild relatives of 
strategic crops. Such information contribute 
effectively in breeding programs design and 
development of new cultivars of better 
performance. The used techniques revealed a 
very narrow range of variation at DNA and protein 
levels for CDKB1 in all studied Oryza species 
except O. brachyantha. The later exhibited a 
considerable variation at both levels suggesting 
an important future role for its genome in 
enrichment of genetic variation in cultivated rices. 
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Table 2. Subcellular localization and physiochemical properties of CDKB1 in some Oryza species. 

Species 
Subcellular 

location 
Molecular 

weight 
Formula: 

No. of 
Amino 
acids 

No. of negatively 
charged residues 

No. of positively  
charged residues 

PI 
Instability 

index 

O. nivara Nucleus 34604 C1571H2488N420O437S11 302 36 41 8.87 33.01 

O. sativa Indica gp Nucleus 34604 C1571H2488N420O437S11 302 36 41 8.87 33.01 

O. sativa Japonica gp Nucleus 34604 C1571H2488N420O437S11 302 36 41 8.87 33.01 

O. rufipogon Nucleus 34604 C1571H2488N420O437S11 302 36 41 8.87 33.01 

O. barthii Nucleus 34604 C1571H2488N420O437S11 302 36 41 8.87 33.01 

O. glumipatula Nucleus 34604 C1571H2488N420O437S11 302 36 41 8.87 33.01 

O. glaberrima Nucleus 34604 C1571H2488N420O437S11 302 36 41 8.87 33.01 

O. meridionalis Nucleus 34591 C1571H2489N419O437S11 302 36 41 8.87 33.51 

O. punctate Nucleus 34630 C1573H2490N420O437S11 302 36 41 8.87 33.48 

O. brachyantha Nucleus 34580 C1564H2476N424O436S12 302 36 42 9.00 28.82 
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Figure 3. Multalin-based amino acid sequence alignment of CDKB1 in some Oryza species showing PPTALRE motif. 
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Table 3. Details of secondary structures and 3-D model of CDKB in some Oryza species.
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

Figure 4. Predicted 3-D models for CDKB1 in some Oryza species. 
 
 
 
 
 
 

  

Species 

Secondary structure 3-D Model 

Alpha helix 
(%) 

Extended 
Strand (%) 

Beta turn 
(%) 

dimensions (Å) 
Z-Score 

X Y Z 

O. nivara 43.38 12.58 5.63 46.8 59.4 61.2 - 4.08 

O. sativa Indica gp 43.38 12.58 5.63 46.8 59.4 61.2 - 4.08 

O. sativa Japonica gp 43.38 12.58 5.63 46.8 59.4 61.2 - 4.08 

O. rufipogon 43.38 12.58 5.63 46.8 59.4 61.2 - 4.08 

O. barthii 43.38 12.58 5.63 46.8 59.4 61.2 - 4.08 

O. glumipatula 43.38 12.58 5.63 46.8 59.4 61.2 - 4.08 

O. glaberrima 43.38 12.58 5.63 46.8 59.4 61.2 - 4.08 

O. meridionalis 42.38 14.57 5.96 46.8 59.4 61.2 - 4.02 

O. punctate 41.06 12.91 6.62 46.8 59.4 61.2 - 4.19 

O. brachyantha 43.05 13.58 6.29 64.4 56.2 50.0 - 6.88 
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