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The degree to which certain genes are relevant to biological inquiries can be an open question. State-of-
the-art computational methods can help understanding functional associations between gene expression 
patterns and subsequent biological experiments. Therefore, the basic scientific need to correlate 
significant differential expression levels to biological variation phenomena is highly demanded. RNA-
sequencing (RNA-seq) methods employ next-generation sequencing (NGS) technology towards 
scanning RNA molecules in samples and quantify their amount. Development of crops that can 
overcome environmental stresses, while maintaining productivity, proved to be a basic necessity for 
agricultural productivity. Arabidopsis thaliana is an ideal model organism for studying biologically 
relevant questions about global gene regulation in response to stresses. The main purpose of this study 
is to identify differentially expressed genes in A. thaliana under heat-stress conditions. A workflow for 
RNA-seq analysis is proposed to identify these genes using; edgeR and Fisher criterion (FC) analysis 
methods. The identified candidate genes are validated via two popular references; DRASTIC and 
TAIR10. Results suggest that these two methods can be combined to perform differential expression 
analysis within RNA-Seq data, without strong assumptions. Comparative evaluation of the proposed 
methods demonstrates successful identification of stress-related genes, with improved prediction 
accuracy. This shows that presented workflow and the differential analysis methods can be applied to 
identify differentially expressed genes from RNA-seq data for other organisms. Finally, literature based 
verification for the top 5% detected genes shared between FC and edgeR methods is demonstrated. 
Suitable justification is given to help discover newly response-related genes to heat phenomenon. 
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INTRODUCTION 

To increase crop productivity subject to 
shrinking cultivable land and natural resources 
has become a vital goal for agricultural scientists 
and economists alike. However, environmental 
stress factors like drought, salinity, high and low 
temperatures, high light, together with biotic 
factors like pests and diseases can reduce 
agricultural gains significantly. Notably, these 
factors can affect the quality and yield of harvest 
production gradually. Investigation of the 
molecular mechanisms that underlie stress 

resistance is considered a first step towards the 
goal of producing crops that demonstrate 
resistance to abiotic stress. Towards 
understanding plant stress responses, it is much 
needed to understand the mechanisms of stress 
responsive genes regulation (Shameer, K. et al., 
2009). 

Global transcriptomic analysis can be 
performed using mircoarrays or next-generation 
sequencing.  They help understand the functional 
associations depending on proper expression 
patterns of genes to coordinate subsequent 
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biological experiments (Moreno-Risueno, M. et al., 
2010; Less, H. et al., 2011; Friedel, S. et al., 
2012). The classical transcriptomic data analysis 
workflows concentrate on estimating the 
adjustments in expression of each single gene. 
This is called differential expression (DE) analysis 
that utilizes theory testing to quantify the statistical 
significance of a watched expression change. This 
significance is based on matching between-
sample (condition) variation and within-sample 
(replicate) variation (De la Fuente, A., 2010). 

Recent advances in NGS reduced sequencing 
costs to a great deal, making it more feasible to 
create a large volume of sequencing data 
effectively and efficiently. Sequencing data forms 
a large number of short sequence fragments 
repository that needs to be processed through a 
set of phases before performing relative 
abundance estimation (Quinn, T.P. et al., 2018). 

Even with sequencing cost reduction, RNA-
seq experiments can still be expensive for small-
budget research projects. As a result of 
constraining RNA-seq studies to just a few 
libraries, there is often limited replication. Hence, 
it is imperative to estimate biological variation as 
reliably as possible from small number of replicate 
libraries. This issue can be amplified by the fact 
that different genes or transcripts may have 
distinctive degrees of biological variation 
(McCarthy, D. J. et al., 2012). 

Combining discovery and quantification steps 
in single high-throughput sequencing yields a 
powerful method of sequencing RNA called RNA-
seq.  

Technical variation is associated with the 
sequencing technology whereas biological 
variation refers to changes in expression levels 
between experimental subjects.  Information is 
shared between genes to estimate biological 
variation reliably even when the number of 
replicates is very small. One very common issue 
is how to use the read counts to detect 
differentially expressed genes between different 
experimental conditions (Chen, Y. et al., 2011). 

Arabidopsis thaliana has been used to study 
plant changes for more than fifty years and for 
genetic analysis. Most recently, A. thaliana is 
preferably used as a main model organism to 
consider distinctive parts of plant science, 
particularly for such branches as molecular 
biology, genetics and genomics (Swarbreck, D. et 
al., 2008). 

In order to gain the maximum benefits of 
RNA-seq, computational techniques are required 
to fulfill transcriptome assembly. There are two 

main approaches for transforming RNA-seq raw 
data into transcript sequences; either the 
approach of genome-guided or via de novo 
assembly. The genome-guided approach for 
transcriptome studies has rapidly turned into a 
standard method to deal with RNA-seq analysis 
for model organisms like A. thaliana. There is a 
number of software packages used to serve this 
purpose (Haas, B. et al., 2013). This research 
follows RNA-seq analysis workflow to identify 
genes expressed in A. thaliana in response to 
heat-stress factors on the plants.  

A computational system for network centric 
transcriptome analysis was presented for 
detecting biologically important genes that were 
collected from seedling root and shoot tissues of 
A. thaliana under stress conditions (Ma, C. et al., 
2014). The positive samples for training the ML-
based prediction models were known stress 
related genes from the DRASTIC and TAIR 
databases. 

STIF search algorithm enabled the 
identification of predicted sites upstream of plant 
stress genes (Sundar, A. et al., 2008). The 
dataset of 60 stress-up regulated genes were 
identified within five reference databases; 
RARGE, DRASTIC, StressLink, AtGenExpress, 
DATF, and TAIR which were used also for the 
validation study.  

STIFDB provided extensive information about 
various stress responsive genes and stress 
inducible transcription factors of A. thaliana 
(Shameer, K. et al., 2009).  Sequence segments 
of these genes were obtained from TAIR, used to 
access the gene-based contents. Moreover, gene 
expression databases like NASC, DRASTIC, 
RARGEMAEDA, and the StressLink Database 
were used to get those genes. 

A complete workflow of DE and pathway 
analysis using the edgeR quasi-likelihood pipeline 
was presented (Chen, Y. et al., 2016). 
Computation steps of the analysis pipeline were 
performed using R software packages.  

The edgeR and DESeq2 standard log-ratio 
transformation-based methods efficiently measure 
DE from RNA-seq data, while certain assumptions 
are met (Quinn, T.P. et al., 2018). Results 
confirmed that those methods have high precision 
in simulations and perform well on real data too.  

Computational framework for huge datasets 
RNA-seq with no dependence on transcript 
annotations implemented exact and productive 
DE at alternative splicing variants identified 
automatically (Hu, Y., 2013). It was indicated that 
no need for full transcript quantification and 
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reconstruction.  
A guideline for RNA-seq data analysis was 

explored with a review for all the major steps in 
RNA-seq data analysis (Conesa, A. et al., 2016). 
It demonstrated generic roadmap for experimental 
design and analysis using standard Illumina 
sequencing. 

Examination test of ALDEx2 and other 
transformation-based methods demonstrated that 
ALDEx2 runs much slower than edgeR and other 
methods (Quinn, T.P. et al., 2018). Additionally, 
ALDEx2 cannot provide a well-documented 
simplification for mixed models. 

Cufflinks, IsoEM, RSEM, and HTSeq RNA-
seq expression quantification tools were 
examined for their performance (Chandramohan, 
R. et al., 2013). It was shown that Cufflinks, 
RSEM, and IsoEM tools have some limitations 
regarding correlation with Quantitative reverse 
transcription PCR (RT-qPCR) measurements in 
comparison to HTSeq tool. However, higher 
accuracy of the expression values can be 
obtained by applying the first three tools. 

A machine Learning based methodology for 
transcriptome analysis mlDNA implemented as R 
package to re-analyze a set of abiotic stress 
expression data in A. thaliana (Ma, C. et al., 
2014). The mlDNA demonstrated notable success 
in identifying stress related genes using traditional 
statistical testing–based DE analysis, with 
noticeably improved prediction accuracy. 
Although, this research dealt with six types of 
abiotic stress, it was made clear that it 
concentrated only on salt stress details as it gave 
the best work results. Moreover, it did not present 
the resulting set of stress related genes that were 
identified for each type of the mentioned six 
abiotic stresses to achieve credibility. 

Hands on Training in RNA-seq Data Analysis 
were proposed for a general workflow to carry out 
a RNA-seq experiment (I-Hsuan. Lin., 2016). It 
offered comprehensive steps for mapping and 
analysis of given two adult female cell lines 
datasets. The differential gene expression 
analysis was performed using edgeR. However, 
results of that work was not validated or checked 
via trusted reference databases. 
 
MATERIALS AND METHODS 
          The Proposed RNA-seq Analysis workflow 
is divided into two main phases: (1) Generation of 
Expression Matrix, and (2) Differential Expression 
analysis. A schematic overview of the workflow is 
detailed in Figure 1 to clearly describe smooth 

navigation between the two phases. All processes 
and steps of this workflow do not have 
dependencies on the structure of the entry 
datasets or the reference genome and 
annotations. Additionally, no certain assumptions 
or parameters are required to apply this workflow 
on other datasets. 

Datasets, Software Packages and 
Computational Requirement 

Datasets and Experiment Description 
A. thaliana reference genome FASTA 

sequences and annotation GTF files can be 
downloaded from the Ensembl FTP (https://plants. 
ensembl.org/info /website/ftp/index.html) as 
shown in Table 1. 

Table 1: Arabidopsis Thaliana reference 
genome and annotation files 

File Name Size 

Arabidopsis 
_thaliana. 

TAIR10.dna. 
toplevel.fa.gz 

36 MB 

Arabidopsis_thaliana. 
TAIR10.41.gtf.gz 

10 MB 

 
RNA-seq FASTQ data files for A. thaliana under 
heat-stress were downloaded from the NCBI 
website. The experiment data that is covered in 
this study collected raw reads of plants in 
Moscow, Russia.  A Third leaf was collected from 
15 plants of age 21 days after heat treatment at 
42°C for 1, 3, 6, 12, and 24 hours.  The 
experiment was performed with 2 replicates for 
each of the mentioned 5 different time points. This 
experiment was SINGLE stranded – Illumina Hi-
Seq 2000 – RNA-seq libraries from 
TRANSCRIPTOMIC PolyA RNA. Ten files that 
were downloaded are listed below with their 
accession, description, and size from 
(https://www.ncbi .nlm.nih.gov/sra/?ter 
m=Arabidopsis+th aliana+Heat+%2Bmoscow) as 
shown in Table 2. 

Software Packages and Tools 
The following list contains software tools and 

packages that were integrated with custom code 
to carry out the execution of the various 
processes along the presented workflow. 

STAR (Spliced Transcripts Alignment to a 
Reference): 2.5.3a [March 17, 2017] version 
available on BA-HPC. 
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Figure 1: RNA-seq analysis Workflow 
 

Table 2: Data files of RNA-seq FASTQ raw reads 
Symbol Accession File Name Description Size 

1h_ Rep1 SRX1881868 SRR3724768.fastq.gz Heat Treatment 1 hour Replicate 1 532 MB 

1h_ Rep2 SRX1881876 SRR3724774.fastq.gz Heat Treatment 1 hour Replicate 2 73 MB 

3h_ Rep1 SRX1881880 SRR3724778.fastq.gz Heat Treatment 3 hours Replicate 1 1.4 GB 

3h_ Rep2 SRX1881883 SRR3724782.fastq.gz Heat Treatment 3 hours Replicate 2 1.16 GB 

6h_ Rep1 SRX1881886 SRR3724785.fastq.gz Heat Treatment 6 hours Replicate 1 1.38 GB 

6h_ Rep2 SRX1881888 SRR3724786.fastq.gz Heat Treatment 6 hours Replicate 2 1.46 GB 

12h_Rep1 SRX1881889 SRR3724787.fastq.gz Heat Treatment 12 hours Replicate 1 1.64 GB 

12h_Rep2 SRX1881897 SRR3724798.fastq.gz Heat Treatment 12 hours Replicate 2 1.63 GB 

24h_Rep1 SRX1881908 SRR3724806.fastq.gz Heat Treatment 24 hours Replicate 1 1.61 GB 

24h_Rep2 SRX1881912 SRR3724814.fastq.gz Heat Treatment 24 hours Replicate 2 1.39 GB 
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RSEM (RNA-seq by Expectation-
Maximization): 1.2.30 [May 15, 2016] version 
available on BA-HPC. 

edgeR: Package R version 3.3.2 [2016-10-
31]. 

Computational Requirements 
Unix-type operating systems (primarily Linux); 

it provides a command-line interface and is best 
run on a high-memory, multicore computer or in a 
high-performance computing environment. In 
general, having ~1 GB of RAM per 1 million 
paired-end reads is recommended. A typical 
configuration is a multicore server with 256 GB to 
1 TB of RAM. 

For the research problem presented here, the 
lack of required computing resources to 
accomplish the required work can be a challenge. 
In this project, the computational resources that 
were used were provided by The Bibliotheca 
Alexandrina (bibalex) (BA-HPC group, 2018). The 
super computer BA-HPC capabilities are used to 
achieve this work. 

Generation of Expression Matrix 

Creation of BED annotations and Genome 
Indices 
The annotations recorded in the GTF files are 
converted into two BED-formatted files; one for 
genes and the other for transcripts, as shown in 
Table 3. 
Table 3: Arabidopsis Thaliana annotation files 

in BED format 
File Name Size 

Arab_Thail_gene.bed 1.8 MB 

Arab_Thail_transcript.bed 0.4 MB 

 
Then, the reference genome FASTA file is used to 
create the genome indices via both STAR and 
RSEM tools. 

STAR: 15 STAR-formatted files generated. 
Those indices will be used into the step of 
mapping raw reads to reference genome. 

RSEM: 7 RSEM-formatted files generated 
which will be used into the step of expression 
quantification. 

Mapping raw reads to reference genome 
The step of mapping of the RNA-seq reads 

aims to find matches between the reference 
genome and the sequences of the sampled short 
reads. STAR is one of the most popular RNA-seq 
mappers. It is adjusted to identify non-canonical 
splice junctions or map long-reads (Conesa, A. et 

al., 2016). Using indices files generated by STAR 
in the previous step, each individual read with the 
reference genome is mapped. BAM files are 
generated sorted by coordinates. Moreover, 
'Log.final.out' file is generated which shows some 
statistics of mapping process such as Number of 
input reads, Mapping speed (Millions of reads per 
hour), Percentage of uniquely mapped reads, 
Average mapped length, Percentage of 
unmapped reads, etc.... These statistics are 
useful for quality control and some of them are 
shown in Table 4. 

Table 4: some mapping statistics in 
'Log.final.out' 

Sample 
Name 

Number  
of input 
reads 

Uniquely 
 mapped 
reads % 

1h_ Rep1 5442791 92.97 

1h_ Rep2 761850 93.76 

3h_ Rep1 14381738 79.94 

3h_ Rep2 11927547 92.74 

6h_ Rep1 14136645 88.9 

6h_ Rep2 14925137 93.35 

12h_ Rep1 93.35 91.1 

12h_ Rep2 16758327 94.15 

24h_ Rep1 16442117 93.09 

24h_ Rep2 14216929 85.93 

 

Expression Quantification 
In essence, quantification involves “counting” 

the number of times a sequence aligns to a 
specific part of the reference. The counts are 
represented as a matrix of describing the 
estimated frequency of each transcript is 
presented for each sample under study.  RSEM 
software implements the Expectation 
Maximization (EM) algorithm which estimates the 
related abundances of the transcripts (Quinn, T.P. 
et al., 2018). In the previous step, STAR was used 
to output genomic alignments in transcriptomic 
coordinate 'Aligned.to Transcriptome.out.bam'. 
This file and the generated indices using RSEM 
were passed in to quantify the gene and transcript 
expression levels for each mapped read. RSEM 
generates two result files for each sample or 
replicate representing the expected RNA-seq 
fragments assigned to all genes and isoforms 
exist in that sample as the example file of 12 hr 
rep 2 is shown in Table 5 and Table 6. 

Building Expression Matrix 
This section describes the preparation of 

gene-level and transcript-level expression 
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matrices. All 'rsem.genes. results' files for all 
replicates are merged side-by-side, and then the 
columns containing the (expected_ count) 
information are selected, and placed into ONE 
final output file (Gene-level:' genes.rsem. txt'). The 

same is done for 'rsem.isoforms.results' files for 
all replicates and ONE final output file (Transcript-
level: 'isoforms.rsem.txt'). Table 7 shows the 
abundance estimation by RSEM for all replicates 
at Gene-level. 

 
 

Table 5: some results from file 'rsem.genes.results' for sample '12h_Rep2' 

Gene Id Transcript Id(s) Length 
Effective  
Length 

Expected  
Count 

AT1G01010 AT1G01010.1 1688 1639 106 

AT1G01020 
AT1G01020.1,AT1G01020.2,A
T1G01020.3,AT1G01020.4,AT

1G01020.5,AT1G01020.6 
1196.51 1147.51 328 

AT1G01030 AT1G01030.1,AT1G01030.2 1905 1856 47 

AT1G01040 AT1G01040.1,AT1G01040.2 6161.97 6112.97 1233.49 

AT1G01046 AT1G01046 207 158 18 

AT1G01050 AT1G01050.1,AT1G01050.2 994 945 734 

AT1G01060 

AT1G01060.1,AT1G01060.2,A
T1G01060.3,AT1G01060.4, 

AT1G01060.5,AT1G01060.6,A
T1G01060.7,AT1G01060.8 

2618.03 2569.03 37 

AT1G01070 AT1G01070.1,AT1G01070.2 1536.49 1487.49 87 

 
 

Table 6: some results from file 'rsem.isoforms.results' for sample '12h_Rep2' 

Transcript Id Gene Id Length 
Effective 
 Length 

Expected 
 Count 

AT1G01010.1 AT1G01010 1688 1639 106 

AT1G01020.1 AT1G01020 1329 1280 0 

AT1G01020.2 AT1G01020 1087 1038 198.38 

AT1G01020.3 AT1G01020 1420 1371 115.69 

AT1G01020.4 AT1G01020 1397 1348 13.93 

AT1G01020.5 AT1G01020 1306 1257 0 

AT1G01020.6 AT1G01020 944 895 0 

AT1G01030.1 AT1G01030 1905 1856 47 

AT1G01030.2 AT1G01030 1836 1787 0 

AT1G01040.1 AT1G01040 6276 6227 897.39 

        Length: length of the reconstructed transcript.  
        Effective_length: transcript_length – mean_fragment_length + 1 .  

Expected_count: number of expected RNA-seq fragments assigned to the transcript given maximum –
likelihood transcript abundance estimates. 
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Table 7: The content of the created data matrix for some genes at Gene-level 

 

Differential Expression analysis 
The alignment and quantification processes 

produce a count matrix that is the most commonly 
used format in DE analysis. There are many 
methods for DE analysis; DESeq and edgeR 
seem to be the most popular of those methods 
(Robinson, M. D. et al., 2010). 

After completion of the phase 'Generation of 
Expression Matrix', analysis of the resulting matrix 
aims to detect the highly expressed genes which 
obviously affected by heat-stress. 

In this work, two different methods are utilized 
in identification of differentially expressed genes 
and transcripts; FC, and edgeR methods. Each 
method tries to find the set of highly expressed 
genes to upgrade and define them as heat-stress 
genes. 

Fisher criterion (FC) 
Many researchers suggested using the 

Fisher's exact test, a likelihood ratio test, or t-
statistics as an approximation to test whether a 
gene is differentially expressed between their two 
samples (Bullard, J. et al., 2010). FC is a popular 
statistical approach that measures separation 
between estimates of different classes. It is going 
to be used here, as a method for measuring the 
DE genes and transcripts within the resulting 
matrix. Detecting the overly expressed genes that 
are affected by the heat-stress is the main goal. 

The following set of equations (1), (2), (3), and 
(4) describes the calculation of FC for genes 
resulting from the expression matrix 
(Expected_count). FC is determined for each two 

consecutive time points, 𝐹𝐶𝑖−𝑗  (2), taking into 

consideration that each time point has set of 
replicates that should be involved to correctly 
measure the variance between samples.  The 
complete FC of each gene, 𝐹𝐶𝑡ota𝑙 (1), is the 
cumulative of all sub FC for given time points for 
that gene. 
 

𝐹𝐶𝑡ota𝑙 = 𝐹𝐶1_2  + 𝐹𝐶2_3  + ⋯ + 𝐹𝐶(n−1)_n                 

(1) 

𝐹𝐶𝑖−𝑗 = (𝑀𝑖 − 𝑀𝑗)2/ (𝑆𝐷𝑖
2+ 𝑆𝐷𝑗

2)    (2) 

Where,    
• 𝐹𝐶𝑖−𝑗  : Fisher criterion between 

time points (𝑖, 𝑎𝑛𝑑 𝑗) 
• 𝑀𝑖: mean of sample replicates at 

time point (𝑖)  

• 𝑆𝐷𝑖: standard deviation at time 

point (𝑖) (𝑆𝐷2: variance of sample 
replicates) 

• 𝑖, 𝑗: time points 
𝑀𝑖= ∑ (𝑅𝑒𝑝𝑖𝑘) / 𝑚                               (3) 
 𝑆𝐷𝑖

2 = ∑ (𝑅𝑒𝑝𝑖𝑘  – 𝑀𝑖)
2 / (𝑚 − 1)        (4) 

Where,   
•  𝑚: number of replicates per 

sample at time point(𝑖) 

• 𝑘: replicate number 𝑘 = 1 … 𝑚 

edgeR Analysis 
This is the second method used to determine 

the overly expressed genes that are affected by 
the heat-stress. The following script is created by 
the assistance of edgeR software package. 
Empirical Analysis of Digital Gene Expression 
Data in R (edgeR): its main purpose is the DE 
analysis of RNA-seq expression profiles with 
biological replication.  The edgeR implements a 
range of statistical methodology based on the 
negative binomial distributions, including empirical 
Bayes estimation, exact tests, generalized linear 
models and quasi-likelihood tests (McCarthy, D. J. 
et al., 2012).  

Filtering out low levels expressed genes prior 
to DE analysis reduces the need for correction 
and also improves the detection power. Some 
methods, such as the well-known edgeR, take as 
input raw read counts and present possible 
preference sources into the statistical model to 
perform an integrated normalization along with DE 
analysis (Conesa, A. et al., 2016). 

Gene Id 
1h_ 

 Rep1 
1h_ 

 Rep2 
3h_  

Rep1 
3h_  

Rep2 
6h_ 

 Rep1 
6h_  

Rep2 
12h_ 
 Rep1 

12h_ 
 Rep2 

24h_ 
 Rep1 

24h_ 
 Rep2 

AT1G01010 25 0 60 59.01 46 48 79 106 91 62 

AT1G01020 56 9 61 163 150.05 216 198 328 200 152 

AT1G01030 49 3 21 94 42 20 49 47 25 12 

AT1G01040 139 13 289 334 240.28 639.6 872.11 1233.49 967 659.28 

AT1G01046 0.5 0.5 0.5 0.5 1.5 11 12 18 8.5 4.5 

AT1G01050 305 39 432.75 443 575 675.98 453.9 734 346.91 269.72 

AT1G01060 2607.95 199 4620.58 401 2789.41 72.01 670.95 37 11 13 

AT1G01070 10 0 10 12 16 56 51 87 51 53 

AT1G01080 365 44 377 318 506.02 189 236 305.99 47 33 
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The book chapter in (Chen, Y. et al., 2011) 
explains the 'estimateDisp' function and the 
weighted likelihood empirical Bayes method. 
Different genes show different levels of variability, 
but the number of replicate samples from which 
variability is estimated can be very small indeed. 

The following steps summarize the performed 
edgeR script: 
Load gene expression data, gene-level and 

transcription-level annotations 
Merge (Gene and Isoforms) with (Annotation) 
Filter lowly expressed genes/transcripts and 

recompute the library sizes  
Calculate normalization factors using TMM 

normalization to scale the raw library sizes 
Estimating dispersion 
Differential expression: quasi-likelihood F-test 
 
Output files: 
DE_analysis.gene.csv: are the set of overly 

expressed genes in the given quantified 
samples. 

DE_analysis.transcript.csv: are the set of overly 
expressed transcripts in the given quantified 
samples. 

 
RESULTS  

After applying all steps of a workflow run, the 
output file (genes.rsem.txt) contained (34,218) 
differentially expressed genes. The next step is to 
discover the highest differentially expressed 
genes from this set based on the two methods 
described above. Additionally, a reasonable set of 
comparisons between results of the two analysis 
methods is held to provide meaningful justification 
of these results. 

Heat stress Genes References 
In this study, two different references are used 

to validate the results from the differentially 
expression matrix. Known heat-stress related 
genes for A. thaliana can be collected from two 
important references (Ma, C. et al., 2014): 

1- TAIR10 (The Arabidopsis Information 
Resource) (TAIR team, 2019)  

This reference maintains a database of 
genetic and molecular biology data for the higher 
model   A. thaliana plant. Heat-stress genes from 
TAIR10 were retrieved based on “heat” keyword 
search and returned (188) different genomic loci. 

2- DRASTIC (Database Resource for the 
Analysis of Signal Transduction in Cells) 
(Gary Lyon, 2018)  

A manually derived database of plant 
expressed sequence tags and genes up- or down-

regulated in response to various pathogens (biotic 
stress), chemical treatments, and abiotic stress 
such as drought, salt, heat and cold. After 
searching, (43) non redundant genes are found 
for   A. thaliana that were mostly experimentally 
validated to be heat-stress. 

The intersection between TAIR10 and 
DRASTIC databases are only (6) genes. This 
affects the explanation of results gained and it is 
discussed later.  

Differential Expression Analysis Using FC 
FC method was used to detect the most 

differentially expressed genes in the (34,218) 
differentially expressed genes. Calculate FC for 
those genes by applying the equation (1) using 
the following formula: 

𝐹𝐶𝑡ota𝑙 = 𝐹𝐶1−3  + 𝐹𝐶3−6  +𝐹𝐶 6−12 +  𝐹𝐶12−24  
Given that the data samples have 5 time 

points, the FC score was calculated for each 2 
sequential time points. Then, by accumulation, the 
total FC can be determined to estimate the actual 
reflection of DE for all genes. The resulting DE 
genes were ordered according to their total FC in 
descending order to get the highest differentially 
expressed ones. All genes that have 𝐹𝐶𝑡ota𝑙= 0 
were filtered out as the least expressed genes. 
After applying this filtering step, the total number 
of differentially expressed genes has become 
(30,959) genes. In Figure 2, the distribution of 
some genes that have the highest Total FC is 
shown. 

 
Figure 2: Distribution of some highest FCTotal 

genes predicted by FC 
After arranging genes, they are matched to 

the two references of TAIR10 and DRASTIC 
databases. Table 8 shows the predicted 
differentially expressed genes as by FC and their 
intersection with DRASTIC and TAIR10 ordered 
by Top (%) 

Differential Expression Analysis using edgeR 
The edgeR software contains many features, 

options, and opens up flexible possibilities for 
RNA-seq data analysis. When applying edgeR to 
the experimental data, DE analysis is performed 

https://www.arabidopsis.org/search/ERwin/Tair.htm
https://www.arabidopsis.org/about/datasources.jsp
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by applying these functions in order: DGEList, 
merge, calcNormFactors, estimateDisp, glmQLFit, 
glmQLFTest, and decideTestsDGE. 

The significance level (p-value) of DE was 
calculated with t-test, and Limma using 
R/Bioconductor package. The used p-value cutoff 
was p.value=0.01. 

The edgeR script described above is used to 
detect the most differentially expressed genes in 
the (34,218). The resulting files, 
'DE_analysis.gene' and 'DE_analysis.transcript', 
contain only (18,541) differentially expressed 
genes after edgeR script execution. Moreover, 
Fvalue, for each gene is generated for each sample 
or replicate in such files. Correspondingly, genes 
that have Fvalue= 0 have been excluded to filter out 
the least expressed genes. After applying this 
filtration, the total number of differentially 
expressed genes has become (18,517) genes and 
some of highest Fvalue genes are shown in Figure 
3. 

 
Figure 3: Distribution of some highest 

Fvalue genes predicted by edgeR 
Similarly, after ordering genes by (Fvalue) in 

descending, they are matched to the two 
references of TAIR10 and DRASTIC databases. 
Table 9 shows the predicted differentially 
expressed by edgeR and their intersection with 
DRASTIC and TAIR10 ordered by Top (%). 

Comparisons  
The predicted heat-stress genes using both 

FC and edgeR show the effectiveness of both DE 
methods. An additional verification step by other 
methods is performed to cover the evaluation of 
the presented results and their relation to other 
trusted sources, and to each other. 

Table 10 handles the intersection between 
equal slices (same percentage) genes generated 
by both edgeR, and FC methods gradually from 
1% up to 100%. For example, the first row in the 
table, the highest (1%) genes in FC and edgeR 
are declared. As shown, for edgeR (1% of 18,517 
= 185 genes) and for FC (1% of 30,959 = 309 

genes). The intersected gene between these two 
sets is only one gene [AT5G23240]. Similarly, the 
second row compares top 5% of edgeR (925 
genes) and FC (1547 genes) has 26 [AT5G42200, 
AT5G23240, AT5G05440, AT5G13220, 
AT1G02640, AT2G17840, AT2G47410, 
AT1G56220, AT4G37990, AT3G11590, 
AT2G33050, AT5G62200, AT1G67310, 
AT5G19140, AT2G43540, AT4G30780, 
AT1G03070, AT1G20620, AT1G03220, 
AT1G14970, AT3G13784, AT3G53990, 
AT5G16260, AT4G38580, AT3G04910, 
AT3G18800] intersected genes.  

Figure 4 combines all intersections between 
the heat-stress genes generated by FC, and 
edgeR DE methods and their relations to the 
reference databases DRASTIC, and TAIR10. In 
Figure 4.(A), all the (43) DRASTIC genes exist in 
the FC predicted heat-stress genes. However, 
Figure 4.(B) shows that only (171) TAIR10 genes 
exist in the FC predicted heat-stress genes. In the 
same way, Figure 4.(C) indicates that (41) 
DRASTIC genes exist in the edgeR predicted 
heat-stress genes. However, Figure 4.(D) shows 
that (152) TAIR10 genes exist in the edgeR 
predicted heat-stress genes. Lastly, Figure 4.(E) 
decides that only (6) genes are common between 
DRASTIC and TAIR10 DBs. On the contrary, in 
Figure 4.(F) most of (18,517) edgeR predicted 
genes are included into the (30,959) FC predicted 
genes. Only (6) genes from edgeR are not 
included into FC predicted genes. 

Literature Based verification of 5% 
recommendations 

The set of genes that were detected in Table 
10 can be a potential addition to the body of 
knowledge in systems biology. Top 5% detected 
heat-stress genes shared between FC and edgeR 
based results are (26) genes in total. Exactly, (23) 
genes out of them do not exist in both DRASTIC 
and TAIR10 DBs. It is hypothesized that these 
(23) genes can be a newly discovered heat-stress 
genes. Here, a brief explanation as to why these 
can be response related genes is given, while due 
to space limitation of the article further verification 
is planned for a future study. After reviewing 
recent research published in the National Center 
for Biotechnology Information advances science 
and and (NCBI) as a trusted source for genes 
information, the following notes are collected 
about some of the selected genes (NCBI gene 
database, 2019). 

Gene [AT5G42200] has neither reported 
phenotype nor known in vivo function. 

https://www.ncbi.nlm.nih.gov/pubmed/19854944?dopt=AbstractPlus
https://www.ncbi.nlm.nih.gov/pubmed/19854944?dopt=AbstractPlus
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Figure 4: Venn diagram showing the common heat-stress genes between FC, edgeR,   
DRASTIC and TAIR10 

[(A) FC vs. DRASTIC, (B) FC vs. TAIR10, (C) edgeR vs. DRASTIC,  
(D) edgeR vs. TAIR10, (E) DRASTIC vs. TAIR10, and (F) FC vs. edgeR]. 

 
Table 8: Top percentage intersected genes between DE FC genes and Reference Databases, each 

cell contains number of intersected genes and their gene Ids 
DE FCtotal DRASTIC(43 genes) TAIR10(188 genes) 

Top 1% 
(309 genes) 

1 
(AT1G08830) 

2 
(AT5G23240, AT5G41920) 

Top 5% 
(1547 genes) 

5 
(AT1G20620, AT3G52880,  

AT1G08830, AT5G25220, AT1G15100) 

8 
(AT5G23240, AT2G25140, AT5G41920, 
AT4G21320, AT3G53990, AT1G06460, 

AT4G11660, AT1G51670) 

Top 10% 
(3095 genes) 

7 
(AT1G20620, AT5G02500,  
AT3G52880, AT3G45310, 

 AT1G08830, AT5G25220, AT1G15100) 

12 
(AT1G79930, AT5G23240, AT5G02500, 
AT2G25140, AT5G41920, AT4G37910, 
AT1G12180, AT4G21320, AT3G53990, 
AT1G06460, AT4G11660, AT1G51670) 

Top 20% 
(6191 genes) 

16 
(AT5G07090, AT3G18780, 

 AT3G08580, 
 AT5G13490,  

AT5G08670, AT1G20620, 
 AT3G23990, AT5G02500, 
 AT3G52880, AT4G02940, 
 AT4G16190, AT3G45310, 
 AT1G08830, AT5G18100,  
AT5G25220, AT1G15100) 

27 
(AT4G36990, AT2G41690, AT1G79930, 
AT3G17210, AT5G18340, AT4G39150, 
AT5G23240, AT2G22360,  AT5G27240, 
AT5G17020, AT5G02500, AT2G25140, 
AT2G03020,  AT5G18730, AT5G41920, 
AT4G37910, AT2G46240, AT1G12180,  
AT5G43840, AT4G21320, AT3G53990, 
AT1G06460, AT1G05850, AT4G11660, 
AT1G51670, AT3G23990, AT1G75220) 
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Table 9: Top percentage intersected genes between DE edgeR genes and Reference Databases, 

each cell contains number of intersected genes and their gene Ids 
edgeR genes 

 (Fvalue) 
DRASTIC 

 (43 genes) 
TAIR10 

 (188 genes) 

Top 1% 
(185 genes) 

0 
2 

(AT5G23590, AT5G23240) 

Top 5% 
(925 genes) 

2 
(AT1G20620, 
 AT4G16190) 

12 
(AT4G36990, AT2G32120, 
 AT5G05750, AT5G23590, 
 AT5G23240, AT2G20560, 
 AT3G51910, AT3G53990, 
 AT4G18880, AT3G56740, 
 AT1G75220, AT1G67970) 

Top 10% 
(1851 genes) 

3 
(AT5G47120, 
 AT1G20620, 
 AT4G16190) 

24 
(AT4G36990, AT3G63350, 
 AT2G32120, AT5G05750, 
 AT3G09350, AT5G48850, 
 AT5G23590, AT5G23240, 
 AT2G20560, AT5G27660, 
 AT2G25140, AT3G08970,  
AT5G03720, AT3G57340, 
 AT5G21160, AT3G51910, 
 AT3G24500, AT3G53990, 
 AT1G65280, AT4G18880, 
 AT3G16770, AT3G56740, 
 AT1G75220, AT1G67970) 

Top 20% 
(3703 genes) 

4 
(AT5G47120, 
 AT1G20620,  

AT4G16190, AT5G18100) 

38 
(AT4G36990, AT3G63350, 
 AT2G32120, AT5G02490, 
 AT5G05750, AT3G09350, 
 AT5G48850, AT5G23590, 
 AT1G18700, AT5G23240, 
 AT2G15970, AT2G20560, 
 AT5G27660, AT5G53150, 
 AT1G79920, AT2G25140 

, AT5G15450, AT4G19020,  
AT3G08970, AT5G03720, 
 AT3G07770, AT3G57340,  
AT5G21160, AT2G46240, 
 AT3G51910, AT5G09590, 
 AT3G24500, AT3G53990, 
 AT1G51670, AT5G53400, 
 AT5G58410, AT1G65280, 
 AT4G18880, AT5G16820, 
 AT3G16770, AT3G56740,  
AT1G75220, AT1G67970) 

 
 

 

Table 10: The genes intersected between equal slices of the total edgeR, and FC genes 

Slice size 
Count of edgeR 

genes 
Count of FC 

genes 
Intersected genes 

Top 1% 185 309 1 

Top 5% 925 1547 26 

Top 10% 1851 3095 127 

Top 20% 3703 6191 561 

100 % 18517 30959 18511 
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 However, genes [AT5G05440], and 

[AT5G13220] have functions in protein binding. 
On the other hand, genes [AT1G56220], 
[AT1G02640], [AT4G37990], [AT3G11590], 
[AT5G62200], [AT5G19140], [AT2G43540], 
[AT4G30780], [AT1G03070], [AT1G03220], 
[AT1G14970], [AT3G13784] reported to perform 
as protein coding in different purposes.  

Moreover, gene [AT2G17840] is identified as 
drought-inducible gene and early-responsive to 
dehydration and through differential hybridization. 
It is described as up regulated by abiotic stress; 
high light, drought, cold and salt stress (Yin, M. et 
al., 2017). However, gene [AT2G47410] is 
declared as domain-containing protein which is a 
conserved part of a certain protein sequence and 
structure. It can function, and exist independently 
of the rest of the protein chain (Lee, J. H. et al., 
2008). In addition, gene [AT2G33050] is found as 
a natural antisense transcript and has a gene 
encoding function as a receptor-like protein 
(Kondo, S. et al., 2016). Gene [AT1G67310] is 
considered Calmodulin-binding transcription 
activator protein (CAMTAs) that its functions are 
involved in developmental regulation and 
environmental stress response including abiotic 
and biotic stresses (Shen, C. et al., 2015). Also, 
gene [AT4G38580] is considered a farnesylated 
protein that can mediate protein-protein 
interactions and protein membrane interactions. 
As well, it is reported as heavy metal transport 
detoxification superfamily (Petzold, H. E. et al., 
2017). Besides, gene [AT3G04910] is a 
serine/threonine protein kinase, whose 
transcription is regulated by circadian rhythm. This 
gene expression pattern of tissue specific and 
under various abiotic stresses reveals differential 
expression pattern (Manuka, R. et al., 2015). 
Lastly, gene [AT3G18800] is considered trans-
membrane protein that functions as gateway to 
permit the transport of specific substances across 
the membrane (Sahoo, S. et al., 2019). Some of 
these genes can be ideal candidates to be tested 
in vivo to confirm their relations to abiotic stress 
phenomenon. 

CONCLUSION 
Understanding the impact of various kinds of 

biotic and abiotic stress continues to gain more 
attention in plant research community in order to 
grow better, stress tolerant plants. Information 
about genes expressed during the abiotic stress 
response will provide better understanding of the 
stress resistance phenomenon. The most 

common application of RNA-seq is to estimate 
gene and transcript expression. The presented 
research dedicated for studying the effect of heat-
stress on   A. thaliana plant via utilizing RNA-seq 
analysis.  A proposed workflow for discovering the 
differentially expressed genes is presented and 
covers stages of mapping, quantification, and 
building of expression matrix. Two commonly 
used RNA-seq analysis methods were assessed; 
FC and edgeR. In order to evaluate their 
performance as DE analysis methods for RNA-
seq data, the two methods were applied to ten 
RNA-seq A. thaliana samples under heat-stress. 
Next, DRASTIC and TAIR10 databases were 
used to provide a point of reference. FC predicted 
heat-stress genes contain all DRASTIC and (171) 
TAIR10 genes. Similarily, edgeR predicted heat-
stress genes cover (41) DRASTIC and (152) 
TAIR10 genes. By comparing relative expression 
estimates, it was observed that results were more 
comprehensive and richer than provided by ad 
hoc methods. This evaluation showed improved 
and promising results for detected genes using 
FC and ensures the validity and applicability of the 
presented work. Additionally, workflow presented 
does not put any assumptions on A. thaliana plant 
nature so it can be applied for various organisms. 
Set of significant genes from the top 5% 
recommendation genes were collected to be 
verified to demonstrate the presented results in 
more useful manner. Furthermore, more analysis 
methods can be applied in the future to enrich this 
workflow and in vivo tests can be performed on 
the set of high recommended genes to maximize 
the benefit of the work results. 
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