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RNA – Protein interactions have vital roles in several cellular processes such as RNA transfer, gene 
regulation at the transcriptional processes and sequence encoding. RNA-binding prediction is a very 
important aspect of the analysis that helps in identifying the motifs that bind to DNA and for gene 
regulations. Predicting and recognizing the proteins that bind to RNA is a major challenging and complex 
process due to structural biology. Previously, several computational methods have been used and 
developed for predicting RNA-binding proteins (RBPs) using Support Vector Machine other than many 
other machine learning techniques. This paper proposes a novel computational approach for predicting 
RBPs using Optimum Path Forest (OPF) classifier in conjunction with the information of predicted RNA-
binding residues. Moreover, the statistical information, mainly the singlet and doublet propensity, have 
been taken into consideration. For a given protein, its RNA-binding residues are predicted and then 
checked whether the protein binds to RNA or not through positive and negative samples based on the 
information from that prediction methodology. The results for the previous step can be classified as 
“Binding Protein”, “Nonbinding Protein”, “Binding Protein predicted as Non-Binding Protein” and “Non-
binding Protein predicted as Binding Protein”, and in this case if the protein cannot be identified then the 
OPF classifier is used to determine the protein prediction status. The OPF classifier is used incorporated 
with the amino acid composition feature. The results showed that the statistical information and the 
binding propensity measures of the predicted RNA-binding residues especially contributed to the 
prediction process. In addition, the classifier has improved the overall performance of RBPs prediction 
process.   

Keywords: Gene Regulations, Optimum Path Forest Classifier, Prediction, RNA-binding proteins (RBPs), Non- binding 
proteins, Motifs, Transcriptional Processes, Biomolecules interactions.   

 
INTRODUCTION 

RNA interactions and proteins that associate 
with and bind to RNA have important roles in 
several cellular processes such as RNA transfer, 
gene regulation at the transcriptional processes 
and sequence encoding (Ibba and Soll, 1996, De 
Guzman et al., 1998).The previous studies 
showed that about 6% up to 8% of proteins are 
RNA binding proteins (RBPs) (Cusack, 1997), 

these RBPs also play an essential role in the gene 
regulation and gene expression, so the 
identification and prediction process of RBPs and 
its motifs is very important and vital in protein 
function annotation (Jacobs Anderson and Parker, 
2000). Due to some limitations, such as 
experimental methods and X-ray crystallography 
are very expensive, time- consuming and labor 
intensive only a few studies concentrated on 
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proteins that bind to RNA, in spite of several 
studies related to proteins that bind to DNA.  

Consequently, the identification and prediction 
of RBPs is essential and remains a challenge in 
the biological and genomics’ era (Abdelmohsen, 
2008). Numerous computational approaches have 
been developed and applied to the RBPs 
identification process (Ma et al., 2015). Due to the 
challenges in the experimental techniques, 
computational approaches and tools are required 
to be developed that could be more reliable, 
inexpensive and faster identification of RBPs and 
RNA binding sites. Many computational 
approaches have been developed in different 
strategies for RNA- binding site and RBPs, either 
through protein sequence, or protein structure or 
by combining different machine learning 
approaches using a hybrid sequence with 
structural features which is called protein docking 
(Si et al., 2015).  

The previous studies mainly have focused on 
prediction based on sequence similarity from 
amino acid sequence information (Wang and 
Brown, 2006, Murakami et al., 2010, Wang et al., 
2010 and Ma et al., 2011). The Support Vector 
Machine (SVM) was used by Cai and Lin to 
predict RBPs from amino acid sequence (Cai and 
Lin, 2003) and also used to distinguish RBPs from 
non-RBPs by many different ways (Han et al., 
2004, Yu et al., 2006, Shao et al., 2009, and 
Kumar et al., 2011). Yu et al. developed a new 
approach by using SVM integrating with 
physicochemical properties using protein amino 
acid sequences to predict RPBs (Yu et al., 2006). 
Shao et al. also developed an approach using 
“SVM with a conjoint triad feature that extracts 
information directly from a protein amino acid 
sequence” to differentiate RBPs from non-RBPS 
(Shao et al., 2009). (Kumar et al., 2011) 
developed “RNApred” method that describes a 
SVM to distinguish RBPs from non-RBPs using a 
position specific scoring matrix (PSSM) and its 
input feature. Subsequently, Terribilini et al. 
developed a classical method to predict RBPs and 
sites by using Navie Bayes (NB) contributed with 
RNABindR (Terribilini et al., 2007). 

The second strategy for predicting RBPs is 
through using structure based methods, and the 
protein structure is available. Therefore the 
prediction process will be simple and reliable. 
There are some structured based methods that 
used for predicting RBPs and sites. (Chen and 
lim, 2008) developed a prediction method 
depending on a protein structure information like 
evolution and geometry for predicting RNA 

binding sites. (Zhao et al., 2011) furthermore 
developed a predictor depending on a protein 
structure information by combining RNA binding 
affinity with a structural similarity for RNA binding 
domains. Yang et al. proposed a structural pattern 
in prediction package named SPOT-Seq-RNA for 
“Predicting protein-RNA complex structure and 
RNA-binding function by fold recognition and 
binding affinity prediction” (Yang et al., 2014). 
Another strategy is docking which aimed at 
modelling interaction of macromolecular 
complexes (Moreira et al., 2010). Although, 
research on protein 3D structure modeling is very 
hard and complex, demonstrating protein 
structure of RNA complex is very essential and 
helpful to understand the tools of communication. 
Many docking methods are developed and used 
to predict RNA protein complexes and protein 
structure depending on known RNA (Katchalski – 
Katzir et al., 1992; Ritchie and Kemp, 2000; 
Schneidman-Duhovny et al., 2005; and Gabb et 
al., 1997). 

From the above results of prediction methods 
for RNA binding sites, RNA binding residues and 
RBPs, the accuracy is approximately 60% up to 
80% and the specificity and sensitivity range of 
these methods is extensively extended 
(Nagarajan, and Gromiha, 2014). Every method in 
different strategy has its own perspective because 
of algorithms and techniques that used, the 
various datasets, the input features, and the 
predictors. In addition to the web servers that the 
researcher developed to show the proposed 
method and its results.  

Taking into consideration the limitations from 
the previous studies, our present study proposes 
a novel computational approach for predicting 
RBPs using optimum path forest classifier in 
conjunction with the binding propensity 
information extracted from predicted RNA binding 
residues. Moreover, we consider the statistical 
information mainly the singlet and doublet 
propensity into our methodology. For a given 
protein, we predict its RNA binding residues and 
then check whether the protein binds to RNA or 
not through positive and negative samples based 
on the information from that prediction. For 
judging the query protein we tried to construct two 
or three binding measures using statistical 
propensity (singlet and doublet), and although 
these measures cannot judge all proteins, 
therefore optimum path forest model was 
developed in conjunction with a hybrid feature 
containing binding measures combined with 
statistical propensity information and amino acid 
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composition. 
The rest of this paper is structured as follows: 

Section 2 describes the theoretical background 
including dataset, statistical propensity measures, 
binding measures, feature vector models, and the 
optimum path forest classifier. Section 3 describes 
the proposed approach, showing its effectiveness 
in solving that problem. Section 4 shows the 
evaluation and results using evaluation criteria. 
Section 5 discusses the results of our model with 
comparable results Finally, Section 6 concludes 
the proposed model and highlights some points 
for future work. 
 
MATERIALS AND METHODS 

Theoretical background  
This section firstly describes used dataset in 

details. Secondly, the statistical singlet and 
doublet propensity, then, binding measures, 
subsequently the feature vector models and 
recently the optimum path forest classifier.  

Data set 
The UniProt database 

(http://www.uniport.org/) is used in this study to 
extract RBPs and Non-RBPs (Ma. et al., 2005). 
Data selected manually which is annotated and 
reviewed protein sequences (Consortium et al., 
2012). Selected data divided into a positive 
dataset and a negative dataset as follow: 

Positive Dataset 
The Positive dataset means extracting RNA 

Binding protein sequences from a UniProt 
database when searching the database we 
retrieved about 54,550 RNA binding protein 
sequences. 
The retrieved data designated using “Rough 
Positive” dataset that is used in previous 
researches (Yu et al., 2006; Shao et al., 2009; 
Kumar et al., 2011 and Huang et al., 2010). The 
dataset was processed and filtered by removing 
protein sequences with more than 6000 amino 
acids that may be protein complexes, sequences 
of protein with amino acids less than 50 because 
it might be fragmented and also sequences that 
contain irregular symbol like “X” and “Z” were 
removed. 
As a result of the previous issues, only 3,712 
positive protein sequences were obtained and 
used in our work.  

Negative Dataset 
The Negative dataset also obtained and 

retrieved from the UniProt database through a list 
of keywords such as Non-binding, and DNA/RNA 
binding using logic operator or. The Negative 
dataset contains about 140,387 protein 
sequences. As similar as in positive dataset, a 
rough negative dataset was used to filter our 
retrieved data to be 94,770 protein sequences in 
our negative dataset (Cai and Lin, 2003).   

From the extracted positive and negative 
dataset we noticed that there is imbalance 
problem between numbers of protein sequences, 
and to deal with this problem, 3,712 non-RBPs 
were selected randomly from the negative dataset 
to make our dataset stable with the same size 
from the positive and negative samples. 

The Testing dataset contains a composition of 
equal sizes of proteins from the positive and 
negative datasets, and this combination named 
“RNAt_7424” as used in previous work (Huang et 
al., 2010). As well as the testing dataset is used to 
evaluate the performance of our methodology. 

For predicting RNA binding residues we used 
Protein Data Bank (PDB) to extract RNA protein 
complexes as used in previous studies (Ma. et al 
2015 and Huang et al., 2010). 

Statistical Propensity Measures 
The residue interface propensity is needed to 

measure the importance of different amino acid 
types that is exists in RNA binding sequence 
interface. 

There is singlet and doublet interface 
propensity, the singlet interface propensity (Pi) is 
calculated for each amino acid type (i=1, 2 …20) 
by the following equation: 

𝑃𝑖 =𝑓𝑖

𝑓�̅�  Where 𝑓𝑖 =
∑ 𝑛𝑖

20
𝑖=1

𝑛𝑖  and  𝑓�̅�=
𝑛𝑖̅̅ ̅

∑ 𝑛𝑖
20
𝑖=1

    (1) 

Where ni is the number of amino acid type i 
on the protein surface, and 𝑛�̅� is also the number 
of amino acid type i but in the RNA interface. The 
𝑃𝑖 is more than one as amino acid of type i may 
occurs more frequently in the RNA interface than 
on the protein surface (Liu and Gong, 2012). 

The doublet propensity interface gives a 
measure of pairing preferences of amino acid 
types in RNA protein interfaces. In amino acid 
sequences, the doublet propensity considered 
from amino acid type i and the neighboring amino 
acid j if the distance between their atoms is less 
than or equal to a certain threshold. 

In this work, the distance (threshold) is set to 
be 7.0 Ao, and this threshold value is chosen for 
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the neighboring residues. The doublet propensity 
is calculated by the following equation: 

𝑃𝑖𝑗= 
𝑓̅𝑖𝑗 ∗ 𝑓𝑖 ∗ 𝑓𝑗

𝑓𝑖𝑗 ∗ 𝑓̅𝑖 ∗ 𝑓̅𝑗
 where 𝑓𝑖𝑗

̅̅ ̅ =
�̅�𝑖𝑗

∑ ∑ �̅�𝑖𝑗
20
𝑗=1

20
𝑖=1

  

And 𝑓𝑖𝑗 =
𝑛𝑖𝑗

∑ ∑ 𝑛𝑖𝑗
20
𝑗=1

20
𝑖=1

   (2) 

Where 𝑛𝑖𝑗 is number of doublet of amino acid type 

ij on the protein surface, and �̅�𝑖𝑗 is also number of 

doublet of amino acid type ij but on the RNA 
interface.  

Binding Propensity Measures 
A method for predicting RBPs can be built 

after predicting RNA residues from the RNA 
interface and also after predicting amino acid 
preferences. So to find the binding propensity 
measures we have to consider that RNA binding 
residues should located in the RBPs, and should 
also appear on the surface of RBPs. And non-
RBPs should contain less binding residues 
comparable with RBPs. To complete the 
prediction of RBPs we applied two binding 
measures depending on RNA binding residues, as 
used in (Huang et al., 2010). 

BPM (1) = 
∑ 𝑃𝑅(𝑖)𝑛

𝑖=1

10𝑁
    (3) 

Where BPM is Binding Propensity Measure, n 
is the number of RNA binding residues, PR is the 
predictive reliability of RNA binding residues i that 
predicted using optimum path forest classifier, and 
N is the number of amino acids.  

BPM1 describes the information in the amino 
acids depending on the appearance of RNA 
binding residues, and the reliability of RNA 
binding residues. 

BPM (2) = 
∑ 2−𝑖+1𝑁−1

𝑖=1 ∑ 𝑃𝑅(𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛(𝑖)
𝑘=1

10 (𝑁−1)
 (4) 

Where N is the number of amino acids, i is the 
distance between RNA residue and its neighbor, n 
(i) is the number of two RNA binding residues of i 

amino acid within the distance, 𝑃𝑅(𝑘)̅̅ ̅̅ ̅̅ ̅̅  represents 
the mean predictive reliability of RNA binding 
residue k and binding residue k+i, so the total part 

of ∑ 𝑃𝑅(𝑘)̅̅ ̅̅ ̅̅ ̅̅𝑛(𝑖)
𝑘=1   measures the mean predictive 

reliability of each pair in the RNA binding 
residues. 

BPM 2 describes the relation between RNA 
binding residues with different distances from 1 to 
N-1 amino acids, so we can say that this measure 
represents the association between RNA binding 
residues in the amino acid sequences (Ma et al., 
2015).  

Moreover, this binding feature is similar to the 
doublet statistical propensity in measuring the 
distances between RBPs Paris. 

Feature Vector 
In our work there is four classes of feature 

vector representations. 
Model (1) Simulated using amino acid 

sequence vector  
M1= (X-n, X-n+1… Xt-1, Xt, Xt+1… Xn-1, Xn) 
Where X is the amino acid representation and 

Xn, X-n is a segment of amino acid sequence. Xt 

represents the interface that may contain 0 or 1 
which means interface or non-interface (Liu and 
Gong, 2012). 

Model (2) simulated using amino acid 
composition (AAC) or amino acid alignment 

The Amino Acid alignment means a vector 
that consists of the rate of recurrence for the 20 
amino acids types. In a protein query, the AAC is 
calculated as follow: 

𝑝𝑖 =
𝑙𝑖

𝐿
   Where (i=1, 2, 3… 20) (5) 

Pi represents the rate of recurrence of the ith 
type of amino acid, li is the number of ith type of 
amino acid that is exists in the protein sequence, 
and L is the total number of amino acids in the 
protein sequence. 

Model (3) Simulated using the singlet 
Propensity of amino acids 
M3= (PS-n, PS-n+1… PSt-1, PSt, PSt+1… PSn-1, PSn) 

Where PSi represents the singlet propensity 
of amino acid i. 

Model (4) Simulated using the doublet 
Propensity of neighboring amino acids 
M4= (PD-n,-n+1 PS-n+1,-n+2… PSt-1, t, PSt, t+1, PSn-2, n-1, 
PSn-1, n) 

Where PDij id the doublet propensity of amino 
acid i and its neighbor j in the protein sequence. 

Optimum Path Forest Classifier(OPF) 
Papa et al., presented OPF as a simple, fast, 

efficient, and parameter independent classifier 
(Papa et al., 2009, 2012). OPF is a supervised 
classification method that has shown good results 
in many classification problems (Papa et al., 2008, 
2010., 2012), and the training dataset can be 
represented as a complete graph. It represents 
the samples as graph nodes whose arcs are 
weighted by using any distance function. In the 
graph, each node is represented as a feature 
vector, and each edge connects a pair of nodes, 
constituting a fully connected graph (Sayed et al., 
2016). 

OPF classification process consists of two 
steps, fit and predict. In the fit step, OPF classifier 
chooses the training samples to be prototypes, 
but in the predict step the OPF classifier assigning 
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the label of prototype that offers the lower path 
cost to the test samples using a cost function. 

In our study, the dataset Z is divided into two 
parts Z1 and Z2 where Z1 is the training set and Z2 

is the testing set, and Z is a fully labeled dataset. 
Let (Z1, A) is a complete graph whose nodes are 
the samples in this set and any pair of samples 
represents an arc in A=Z1 X Z1. Let πS be a path 

in the graph in sample S  Z1 (training set), and 
(πS. (S, t)) Is the concatenation between πS and 

the arc (s, t) where t Z1, and S ⊂ Z1 as a set of 
key prototypes of all classes (samples). The past 
cost can be computed by using the following 
equation:  

𝑓𝑚𝑎𝑥 = {
0                  𝑖𝑓𝑠 ∈ 𝑆,

+∞         otherwise ,
   (6) 

𝑓(πs . ( s, t)) = max{𝑓( πs), d(s, t)} , (7) 
Where d(s, t) is the distance between node s 

and node t 
OPF is a practical classifier as it is sensible to 

any outliers, since the prototypes choosing based 
on the Minimum Spanning Tree (MST) may 
choose noisy samples to become prototypes and 
these samples have great impact on OPF’s 
classification decision. A group of prototypes 
which can be represented as S* (represents an 
optimal set of prototypes) that can be found using 
the representation of MST in the complete graph 
(Z1, A). A MST can be described as optimum 
when the sum of its arc weights is the lowest 
amount compared to any other spanning tree in 
the complete graph. A MST contains just one 
optimum path tree for any selected root node, and 
to get it, the closest elements of this tree have to 
be selected with different labels in Z1 (Papa et al., 
2009). Every pair of samples in the MST is 
connected by a single path that can be checked 
and evaluated as minimum or not by equation (6). 

Consequently, in the graph, nodes represent 
all the samples of Z1, and the arcs are weighted 
by the distance d between any neighboring or 
contiguous samples. 

The training phase of this classifier starts with 
nodes (prototypes) to minimize the cost between 
each pair or sample in the training set samples. 
After that, it gets an optimum path forest which 
can be described as a collection of optimum path 
trees rooted at each node or prototype. 
Conversely, in the testing/classification phase all 
the arcs are taken into consideration especially 
those connecting a t sample in the testing data Z2 

with samples s  Z1 (training set), so the sample t 
was a part of the training graph. The optimum 
path P*(t) can be found by evaluating all possible 
paths from S* to the sample t, and label t with the 

most strongly connected prototype in all paths S* 

by λ(R (t))  S*, where λ (t) is the function that 
assigns the correct class label, and R (t) is the 
function that gets the root of t and this root is one 

of the prototypes R (t) ∈S (Papa et al., 2012). We 
can identify this path by calculating the optimum 
cost equation (8) as follows: 

𝐶(𝑡) = min{max{𝐶(𝑠), 𝑑(𝑠, 𝑡)}}, ∀ 𝑠 ∈ 𝑍1 (8) 
According to Eq. (6), it can be assumed that 

the node P (t) is the predecessor in the optimum 

path P*(t), and S* Z1 is the node that satisfies the 
equation too. Given that L(S*) = λ (R (t)) as the 
class t. 

An example of optimum path forest classifier 
example is shown in figure1.(Souza et al., 2012) 
that represents a complete undirected graph 
where the training set Z1 is divided into 5 folds 
named X0, X1, X2, X3, and X4 where X0, X1, and 
X2 from class “RED” and  X3, and X4 from class 
“Blue”. Figure 1(a) represents a complete graph 
computation where X0 and X3 are chosen as 
prototypes. Figure 1(b) represents the Minimum 
Spanning Tree calculation with chosen 
prototypes.  Figure 1(c) shows a new sample X 
that arrives and compute the distance between it 
and to every sample in the training set. Figure 
1(d) shows that X is assigned to tree rooted in X0, 
so X is classified as a new member of class 
“RED”. We can say that the first 2 steps showed 
in (a) and (b) represents the fitting phase and the 
other steps (c) and (d) represents the prediction 
phase. 
 

 
Figure 1: Example of OPF phases workflow 
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Proposed solution 
In this paper, we developed a novel computational 
approach for predicting RBPs using statistical 
information and binding information of predicted 
RNA binding residues in conjunction with optimum 
path forest supervised classifier. We established 
the following plan for predicting RBPs and RNA 
non-binding proteins as follow: (1) identifying a 
training and testing dataset to be used with our 
predictor; (2) We formulate the statistical and 
binding propensity based on the prediction of 
RBPs and residues in the query protein; (3) We 
select the important features to institute the 
predictor; (4) Select OPF classifier to do the 
prediction; (5) from the above 4 steps we 
developed an effective method using our binding 
propensity models and OPF predictor for 

predicting RBPs. Figure (2) shows the flowchart of 
the proposed methodology. The workflow of our 
methodology starts with predicting RNA binding 
residues and calculating the statistical and binding 
propensity measures from the prediction results. 
After that we use the binding propensity measure 
threshold to check whether the query protein 
binds to RNA or not. In case one of the two 
binding propensity is greater than the upper 
threshold assigned for each one then the protein 
assigned to be RBP. As well as in case one of 
them is less than the required lower threshold of it 
then the protein assigned to be Non-RBP. 
Otherwise, if the protein sequence cannot be 
classified to be RBP or non-RBP, OPF classifier is 
used to predict and check whether the query 
protein is RNA binding protein or Not.  

 

 
Figure 2. Flowchart of the proposed methodology
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RESULTS  

EXPERIMENTAL RESULTS 
This section starts by illustrating the evaluation 
criteria, and after that shows the results for our 
methodology depending on feature vector models.  

Evaluation Criteria 
To evaluate the results of our prediction 
methodology, we used five measures: (1) 
Sensitivity (SE); (2) Specificity (SP); (3) Accuracy 
(ACC); (4) Matthew correlation coefficient (MCC); 
and Area under the Curve (AUC) to evaluate our 
OPF classifier and to differentiate between the 
results for each model in the feature vector. 

Sensitivity is defined by the following equation: 

SE = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
     (9) 

Specificity is defined by the following equation: 

SP = 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
    (10) 

Accuracy is defined by the following equation: 

ACC = 
𝑇𝑃+ 𝑇𝑁

𝑇𝑃 + 𝐹𝑃+ 𝑇𝑁 +𝐹𝑁
   (11) 

Matthew correlation coefficient is defined by the 
following equation: 

MCC= 
𝑇𝑃 𝑥 𝑇𝑁−   𝐹𝑃𝑥 𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑁+𝐹𝑁)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)
  (12) 

Where TP, TN, FP, FN is the number of true 
positive, true negative, false positive and false 
negative results.  

Results 
The experimental results of our methodology were 
discussed regarding the evaluation criteria 
discussed before.  
RNA binding residues were predicted before in 
previous studies as stated before, but also here 
we predicted RNA binding residues to assist our 
prediction of RBPs throughout the binding 
propensity measures discussed before. At first 
RBPs and RNA non-binding proteins are assigned 
based on statistical doublet propensity threshold 
with amino acid composition from the feature 
vector models. Table 1 shows the best results of 
feature vector models over our measurements 
and shows the comparison of our models related 
to the statistical propensity (singlet, doublet) on 
the feature vector using 10- fold cross validation. 
The results shows that each model has a better 
performance at some point and may be increased 
at one of the measures but decreased at the 

other, but we can say that the doublet propensity 
and AAC vector models have a good results than 
the other ones by means of we can noticed that 
the sensitivity increases without much more 
decreases in the specificity and accuracy. 
Moreover, we can see that the results of the 
singlet propensity model is much more similar to 
amino acid sequence model.  
The second part in this work is related to RNA 
binding residues that predicted for all proteins in 
the combined dataset RNAt_7424. Then RBPs is 
defined depending on the binding propensity 
measure thresholds. 
In this stage to determine that the query protein 
binds to RNA or not, we have to test RBPs and 
RNA non-binding proteins on different threshold of 
the binding measures. We have two cases, case 1 
depending on the upper threshold of BPM1, and 
BPM2, and case 2 depending on the lower 
threshold of them. The protein is assigned to be 
RBP in case of BPM1 of that protein is more than 
a certain upper threshold of BPM1, or BPM2 of 
that protein is more than a certain upper threshold 
of BPM2. Otherwise, the protein is assigned to be 
non-binding protein in case of BPM1 or BPM2 is 
less than a certain threshold assigned for each 
one. Table 2 shows the results of predicting RBPs 
at different Upper thresholds using BPM1.Table 3 
shows the same as table 2 but at different lower 
thresholds of BPM1. Table 4 shows the results of  
predicting RNA binding protein at different upper 
threshold of BPM2, and Table 5 is similar as table 
4 but at different lower thresholds of BPM2. In this 
stage to determine that the query protein binds to 
RNA or not, we have to test RBPs and RNA non-
binding proteins on different threshold of the 
binding measures. We have two cases, case 1 
depending on the upper threshold of BPM1, and 
BPM2, and case 2 depending on the lower 
threshold of them. The protein is assigned to be 
RBP in case of BPM1 of that protein is more than 
a certain upper threshold of BPM1, or BPM2 of 
that protein is more than a certain upper threshold 
of BPM2. Otherwise, the protein is assigned to be 
non-binding protein in case of BPM1 or BPM2 is 
less than a certain threshold assigned for each 
one. Table 2 shows the results of predicting RBPs 
at different Upper thresholds using BPM1.Table 3 
shows the same as table 2 but at different lower 
thresholds of BPM1. Table 4 shows the results of  
predicting RNA binding protein at different upper 
threshold of BPM2, and Table 5 is similar as table 
4 but at different lower thresholds of BPM2. 
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Table 1: Comparison of the best results of feature vector models using 10-fold cross validation 

Evaluation Criteria 
 Feature Vector Models 

M1 M2 M3 M4 

SE 0.347 0.413 0.312 0.462 

SP 0.921 0.872 0.881 0.927 

ACC 0.802 0.785 0.782 0.804 

MCC 0.0553 0.0524 0.0123 0.0516 

AUC 0.753 0.742 0.743 0.752 

 
Table 2: The Results of predicting RBPs at different Upper thresholds of BPM1 

Upper 
Threshold 

Measurements 

SE SP ACC MCC 

1.0 0.29 0.943 0.596 0.1123 

2.0 0.27 0.962 0.542 0.1114 

3.0 0.25 0.921 0.451 0.0598 

4.0 0.226 0.886 0.582 0.1824 

5.0 0.351 0.778 0.604 0.1916 

 
 

Table 3: The Results of predicting RBPs at different Lower thresholds of BPM1 

Lower 
Threshold 

Measurements 

SE SP ACC MCC 

0.01 0.743 0.16 0.696 0.0523 

0.02 0.862 0.23 0.742 0.0114 

0.03 0.981 0.225 0.751 0.0098 

0.04 0.996 0.226 0.802 0.0124 

0.05 0.998 0.03 0.804 0.0116 

 
Table 4: The Results of predicting RBPs proteins at different Upper thresholds of BPM2 

Upper 
Threshold 

Measurements 

SE SP ACC MCC 

1.1 0.29 0.943 0.546 0.0323 

1.2 0.27 0.962 0.542 0.0214 

1.3 0.05 0.992 0.551 0.0198 

1.4 0.022 0.986 0.582 0.0182 

1.5 0.035 0.998 0.604 0.0171 

 
Table 5: The Results of predicting RBPs at different Lower thresholds of BPM2 

Lower 
Threshold 

Measurements 

SE SP ACC MCC 

0.01 0.743 0.06 0.696 0.0183 

0.02 0.862 0.08 0.742 0.0114 

0.03 0.981 0.041 0.761 0.0148 

0.04 0.996 0.032 0.825 0.0082 

0.05 0.997 0.025 0.83 0.0086 
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From Table 2, and 4 we can classify RBPs and 
non-binding proteins with a high value of 
sensitivity but not specificity as seen in table 2 at 
2.0 sensitivity is 0.27 but specificity is 0.962. Also 
in table 3 at 1.3 sensitivity is 0.05 but specificity is 
0.992.  

On the other side from table 3, and 5 we can 
classify RBPs and non- binding proteins with a 
high value of sensitivity but low specificity, at table 
3 when 0.05 was selected as the lower bound 
threshold, the prediction of RBPs were predicted 
with 0.998 sensitivity but low specificity 0.03, 
same as point 0.05 in table 5 with 0.997 sensitivity 
but 0.025 specificity. 

From the above results we can conclude that 
the protein is assigned to be RNA binding protein, 
if the BPM1 of that protein is greater than 2.0, or 
BPM2 is greater than 1.3. And the protein is 
assigned to be non- binding protein, if the BPM1 
or BPM2 is less than 0.05. In the RNAt_7424 
testing dataset 75 proteins are predicted as RBPs, 
140 are predicted as non-binding proteins, and 
the rest 7209 of proteins are assigned to the OPF 
classifier to be predicted using our criteria. The 
combination of these features has great impact of 
the results which achieved 97.8% sensitivity with 
82.05% specificity, with 83.6% accuracy and 
0.0523 Matthew’s correlation coefficient value. 

 
DISCUSSION  

This section discusses the experimental 
results of the proposed methodology. Although 
some techniques already achieve good results, 
their deterministic characteristic might prevent the 
feasibility of the algorithm in complex situations. 
Our method shows a very good performance for 
predicting RNA binding and non-binding proteins 
for some reasons. At first we combine four models 
in our system as we combine amino acid 
sequences with statistical propensity measures 
(singlet, doublet) and amino acid composition 
(ACC). Moreover, we use machine learning 
method by using OPF classifier rather than 
scoring based method, OPF used in our 
methodology to assist our prediction results. 
Furthermore, we tried to put an interval of 
threshold to the binding propensity measures by 
predicting RNA binding residues for assisting the 
prediction of RBPs  and non-binding  proteins 
depending on the lower and upper threshold. The 
OPF classifier performance was evaluated using 
all features in RNAt-7424 dataset using 10-fold 
cross validation and achieved high values in 
sensitivity, specificity, accuracy, and Matthew 
correlation coefficient respectively. 

After that OPF is combined with our model to 
predict proteins in RNAt-7424 dataset and 
calculate propensity measures for each sequence 
depending on upper and lower threshold to assign 
that sequence to RNA binding or non-binding 
results. The results showed that 75 proteins in the 
RNAt-7424 dataset as predicted to be RBPs, 140 
are assigned to be non-binding proteins, and OPF 
classifier is used to predict the other 7209 
proteins. 
 
CONCLUSION 
In this paper, we proposed and developed an 
effective method for predicting RBPs from amino 
acid sequences using optimum path forest 
classifier in conjunction with statistical and binding 
propensity measures and amino acid composition 
models. The two statistical and binding propensity 
measures are evaluated and analyzed in our 
method. Then the query protein is made based on 
the results. After that if the protein not determined 
to be RNA binding protein or non-RNA binding 
protein, then the OPF is used to identify whether 
the protein sequence status depending on the 
prediction of RNA binding residues. The 
combination of these features has great impact of 
the results which achieved 97.8% sensitivity with 
82.05% specificity, with 83.6% accuracy and 
0.0523 Matthew’s correlation coefficient value. As 
well as we can demonstrate by adding the 
statistical information and the binding propensity 
measures of the predicted RNA-binding residues 
especially contributed to the prediction process. In 
addition, the OPF classifier has improved the 
overall performance of RBPs prediction process.   
For future work we need to construct a web server 
for our prediction model to be used by many 
researches, and to facilitate research’s efficient 
prediction of RBPs. 
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