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As a selective biological agent, Bacillus thuringiensis var. kurstaki (Berliner) (Bt) has been widely used 
to control Spodoptera littoralis (Boisd.). The objective of this study was to evaluate the compatibility 
between a local isolate B. thuringiensis and some recommended insecticides at the recommended field 
rate/concentration (RC), half and 1/4 RC in culture medium. Results showed a significant difference in 
the number of Bt colonies formed following direct exposure to the tested insecticides (chloropyrofos-
methyl, lambda-cyhalothrin, methomyl and flufenoxuron). RC, half and 1/4 RC of Chloropyrofos-methyl 
as well as RC of lambda cyhalothrin inhibited the growth of Bt by 100%. In contrast, emamectin benzoate 
at all concentrations used and methomyl at (half & 1/4 RC) had no effect on the number of Bt colonies 
when compared to control. The comparative efficacy of tested compounds against 2nd larval instar of S. 
littoralis revealed that emamectin benzoate was the most effective compound (with LC50 = 0.0503 ppm) 
compared to the other compounds, while methomyl was the least toxic compound (with LC50 = 7.42 ppm) 
after 48h from treatment. Interaction bioassay showed potentiation effect of emamectin benzoate at zero 
and 24 h, while lambda-cyhalothrin and flufenoxuron exhibited additive effect. In contrast, antagonistic 
effect was observed with chloropyrofos-methyl and methomyl treatments at zero time, while 24h after 
treating the larvae with Bt, both exhibited potentiation and additive effect, respectively. The findings of 
the present study suggested that, application of the tested insecticides after 24h from larval exposure to 
Bt were more effective than when combined with Bt at zero time or individual application. 
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INTRODUCTION 

The cotton leafworm, Spodoptera littoralis 
(Boisd.), is one of the most destructive agricultural 
lepidopterous pests. It can attack numerous 
economically important crops all the year round 
such as cotton, Gossypium hirsutum L., peanut, 
Arachis hypogaea L., soybean, Glycine max L. and 
vegetables in Africa, Asia and Europe (Bayoumi et 

al., 1998 and Pineda et al., 2007). This pest causes 
considerable damage for many field and vegetable 
crops in Egypt. To combat this pest, many chemical 
insecticides belonging to different groups have 
been registered and recommended to use for its 
control according to the approved agricultural pest 
control recommendations (Anonymous, 2012). 
Repeating and intensive use of conventional 
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insecticides such as organophosphate, carbamate 
and pyrethroids against S. littoralis have led to the 
development of insect resistance, and 
subsequently affected the implementation of pest 
control programs and increased environmental 
contamination (Smagghe et al., 1999 and Aydin & 
Gürkan, 2006). To overcome these problems, new 
insecticide groups that produced from natural 
agents or formulations that disrupt the 
physiological processes of the target pest have 
been introduced and registered as alternatives for 
use in integrated pest management programs 
(Dhadialla et al., 1998; Thompson et al., 2000; 
Smagghe et al., 2003 and Nedal and Hassan, 
2009). So, the application of these products such 
as chitin synthesis inhibitors (CSIs) and bio-
pesticides that showed high selectivity and low 
toxicity to human and environment is highly 
appreciated (Teran-Vargas et al., 1997; Furlong et 
al., 1994; Grafton-Cardwell et al., 2005 and Defago 
et al., 2006).  

Chitin synthesis inhibitors act by interfering 
with chitin biosynthesis during moulting period in 
insects, which confers a remarkable action 
specificity with low harm to beneficial arthropods 
(Consoli et al., 2001 and  Wakgari & Giliomee, 
2003) and humans (Grafton-Cardwell et al., 2005).  

Emamectin benzoate is a novel generation of 
avermectin that generated from the modified 
fermentation of the soil microorganism, 
Streptomyces avermitilis (Crouch et al., 1997). It 
acts as a chloride channel activator by binding 
gamma amino butyric acid (GABA) receptor and 
affecting the glutamate-gated chloride channels 
causing  a flow of chloride ion into neuronal cells 
which disrupting nerve impulses. This resulting in, 
irreversible paralysis, cessation of feeding and 
death within 3-4 days (Dunbar et al., 1998; Ishaaya 
et al., 2002 and Grafton-Cardwell et al., 2005). 
Emamectin benzoate has high efficacy against 
Lepidoptera insects including Spodoptera exigua, 
Helicoverpa zea, and S. littoralis (Trumble et al., 
1987; Lopez et al., 2010; El-Sheikh, 2015) and has 
low activity against most beneficial arthropods 
(Jansson et al., 1997) 

B. thuringiensis (Bt) endotoxins are the most 
important microbial insecticides used in the world 
(BenFarhat-Touzri et al., 2013) as an alternative or 
supplement to chemical insecticides. (Bt) 
endotoxins are effective in controlling different 
cotton pests including S. littoralis but not their 
natural enemies (Torres et al., 2006; Armengol et 
al., 2007; Brookes & Barfoot, 2008 and Mhalla et 
al., 2018). However, some shortcomings limit its 
usage, such as its narrow spectrum of activity and 

short persistence in the field (Satinder et al., 2006 
and Sleem et al., 2012). Thus, the combination of 
bio-agent with chemical insecticides was tested as 
attempt to increase the efficiency of the bio-agent, 
minimize the use of chemical insecticides and 
reduce the environmental pollution. Previous 
studies showed potentiation of Bt by addition of 
toxic and non-toxic compounds (Khalique and 
Ahmed 2005; Wang & Huang 1999 and Morris et 
al., 1995).  

Despite importance of mixtures, the interaction 
between Bt and chemical insecticides has rarely 
been investigated (Salama et al., 1984; Morales-
Rodriguez & Peck, 2009 and Amizadeh et al., 
2015). 

Therefore, the current study was conducted to 
evaluate the compatibility between B. thuringiensis 
spores with certain recommended synthetic 
insecticides under laboratory conditions, and the 
comparative efficacy of these insecticides against 
the 2nd larval instar of S. littoralis. The optimal time 
to apply the synthetic insecticides with or after 
larval exposure into B. thuringiensis spores to 
achieve the effective control of S. littoralis was also 
determined. 
 
MATERIALS AND METHODS 

The experiments were carried out under 
laboratory conditions (25 ± 2°C, 65 ± 5% R.H.) at 
the Bio-insecticides Production Unit, Plant 
Protection Research Institute, Agriculture 
Research Center, Ministry of Agriculture, Dokki, 
Giza, Egypt. 

Tested insect:  
A laboratory strain of cotton leafworm, S. 

littoralis was provided by Central Agriculture 
Pesticides Laboratory (CAPL), Dokki, Giza. This 
strain was reared on castor bean leaves as 
described by (El–Defrawi et al., 1964) in laboratory 
under constant conditions of 25 ± 2ºC and 65 ± 5% 
R.H. without any exposure to insecticides. 

Tested compounds: 

Entomopathogenic bacteria:  
Bacillus thuringiensis, subspecies kurstaki was 

kindly provided by insect Pathogen Production 
Unit, Plant Protection Research Institute, ARC, 
Ministry of Agriculture, Egypt. Culture of Bt was 
carried out according to Attathom et al. (1995) as 
follows: T3 medium was prepared which composed 
of tryptone 3.0g, tryptose 2.0g, yeast extract 1.5g, 
MnCl2 0.005g and NaH2PO4. H2O 8.9g, adjusted 
pH to 6.8 and the final volume was made up to 1 
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liter with distilled water. The sterilized medium was 
inoculated and incubated on a shaker (142 rpm) at 
37oC for 72 h. The number of CFU/ml of the 
suspension, which resulted from the previously 
technique of production, was determined by plate 
count method (Atlas, 2004).  

Synthetic insecticides: 
 In this study we used five synthetic 

insecticides that locally recommended in control S. 
littoralis (Table 1).  

Bioassay experiments 

Effect of some synthetic insecticides on B. 
thuringiensis growth: 

Efficacy of some synthetic insecticides on the 
growth of B. thuringiensis was investigated using 
the method described by Ibrahim et al. (2009). 
Each 100 ml portion of the medium was dispensed 
into a 250 Erlenmeyer conical flask and autoclaved 
at 121ºC for 20 minutes and then cooled to about 
45ºC. Stock solutions of the insecticides were 
prepared in sterilized distilled water and 
incorporated into each flask to provide RC, half and 
1/4 RC. Each plate was inoculated with 1ml from 
72h old culture of B. thuringiensis. Each flask was 
shaken well and poured into 3 sterilized Petri-
plates (9 cm in diameter). A medium without 
insecticides served as a control. The inoculated 
plates were incubated at 37±1ºC. After 24h of 
incubation, the growth of B. thuringiensis colony in 
the Petri-plates treated with different insecticides at 
different concentrates was recorded. 

Efficacy of some Synthetic insecticides and B. 
thuringiensis spores against the 2nd larval 
instar of S. littoralis: 

 Bioassay tests were carried out under 
laboratory conditions to evaluate the efficacy of the 
tested compounds against newly ecdysed 2nd larval 
instars of S. littoralis using leaf-dipping technique 
as described by Shepard (1958). A Serial of 
concentrations for each compound were prepared 
in distilled water, then fresh castor bean leaves 
were dipped in each concentration for 20 seconds 
and left to dry at room temperature before being 
offered to larvae. Three replicates with ten larvae 
per replicate were tested for each concentration, 
and each bioassay was repeated three times.  

Control larvae were fed on water-treated leaves. 
The larvae were exposed and fed on treated leaves 
for 48h, and mortality percentages were recorded 
after 24 and 48h for chloropyrofos-methyl, lampda-
cyhaothrin, and methomyl. While in case of 
flufenoxuron, emamectin benzoate and Bt spores 
suspension, the survival larvae were transferred to 
feed on untreated leaves for another 24 h, and the 
mortality were recorded after 48 and 72h for 
flufenoxuron and emamectin benzoate and after 48 
and 72h, 96 and 168h for Bt spores suspension. 
Mortality percentages were corrected as compared 
to control larvae according to Abbott’s formula 
(Abbott, 1925). To estimate LC25, LC50 and slope 
values, the corrected mortality percentages were 
subjected to Probit analysis using Ldp-line software 
according to Finney (1971).  

Interaction between B. thuringiensis spores 
suspensions and some synthetic insecticides:  

This experiment has been done in order to 
define the optimal time for applying synthetic 
insecticides and Bt. The aim behind this was to 
determine the best time of exposure that might 
show high efficacy when both synthetic insecticide 
and Bt were applied together at the same time or in 
different times. Joint toxic action between the Bt 
spores suspension and the tested insecticides 
were evaluated against the 2nd larval instar of S. 
littoralis at two different time intervals according to 
the following. 1) The larvae were treated with only 
LC50 of B. thuringiensis   spores suspension or LC25 
of each synthetic insecticide. 2) The larvae were 
treated with mixture of LC50 of B. thuringiensis   
spores suspension and LC25 of each synthetic 
insecticide (zero time). 3) The larvae were exposed 
into LC50 of B. thuringiensis spores suspension 
only for 24h then, the same larvae were treated 
with LC25 of each synthetic insecticide (24h). Three 
replicates with ten 2nd instar larvae per each 
replicate were used for each treatment and 
bioassays were repeated 3 times. Also, three 
replicates were used as control which fed on water-
treated leaves. The observed mortality percentage 
was recorded after four days of each treatment. 
The expected mortality for the mixture was 
calculated by sum of the observed mortalities of 
each concentration used in the mixture.  

 
 

           Table (1): Synthetic insecticides used in bioassay tests. 
 

 
Rate of  

application 
Manufacturer 

Trade  
name 

Common  
name 

Chemical group 
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1L /Feddan Icta 
Ictan  

50% EC 
Chloropyrofos- 

methyl 
Organophosphate 

50g /100L water Eid 
Lambada  

super 10% WP 
Lambada-  

cyhalothrin 
 

Synthetic pyrethroids 

60g /Feddan Syngenta 
Proclaim 
 5% SG 

Emamectin  
benzoate 

Avermectin 

300g /Feddan KZ 
Neomyl  
90% SP 

Methomyl 
 

Carbamates 

200 cm / Fedden Soltair 
Novo  

10% DC 
Flufenoxuron 

 
Chitin synthesis 

inhibitors 

 
The co-toxicity factors were determined 

according to (Mansour et al., 1966) as follows 

 
This factor was used to categorize the results into 
three categories as follow: Co-toxicity factors ≥ +20 
meant potentiation; co-toxicity factors < - 20 meant 
antagonism; and co-toxicity factors between -20 
and +20 meant additive effect. 

Statistical analysis:  
The mortality data were corrected using 

Abbott’s formula (Abbott, 1925). Probit analysis 
was performed for calculating LC25, LC50, and slope 
values according to Finney (1971) using Ldp-line 
Sofware. The interactions between the tested 
insecticides and Bt were determined by comparing 
expected and observed mortalities based on the 
equation described by Mansour et al. (1966). 
 
RESULTS AND DISCUSSION 

Effect of some synthetic insecticides on B. 
thuringiensis growth:  

The effect of synthetic insecticides used in 
controlling S. littoralis on B. thuringiensis growth 
was investigated. 

Data presented in Table (2) showed that, there 
was no reduction in the growth of Bt when exposed 
to emamectin benzoate, at the three 
concentrations tested and methomyl at half and 1/4 
RC. On the other hand, chloropyrofos-methyl 
showed 100% inhibition of Bt growth at the three 
tested concentrations and lambada- cyhalothrin at 
RC. Whereas flufenoxuron with all concentrations, 

methomyl at RC and lambada- cyhalothrin at half 
and 1/4 RC gave a remarkable reduction in the 
growth of Bt when compared with control.  

Results revealed that, there was a significant 
difference in the number of Bt colonies formed 
following direct exposure to the different tested 
insecticides. Also, it can be notice that, some of 
these insecticides not affect on the number of Bt 
colonies when compared with control.  This would 
indicate that Bt might use these insecticides as 
supplementary nutrient sources by degrading 
them. This ability of Bt has also been shown by 
other researchers (Jaques and Morris, 1981; 
Mandal et al., 2013; Amizadeh et al., 2015 and 
Narkhede et al., 2017) who reported that most 
insecticides are compatible with Bt having little or 
no effect on spore germination and cell 
multiplication. Also they further reported that 
compatibility of Bt and chemical insecticides at low 
concentrations of Carbamates and 
Organophosphates, did not affect bacterial growth 
but improved it, while others specially Chlorinated 
hydrocarbons inhibited growth. In contrary, our 
results revealed that, in chloropyrofos-methyl 
treatments no colonies were formed, because of 
chloropyrofos-methyl may have antibiotic or toxic 
activity against Bt. The current results are in 
agreement with Batista Filho et al. (2001) who 
stated that endosulfan and monocrotophos used at 
maximum concentrations (2.5L / ha and  2250 ml/ 
ha, respectively) reduced the production conidia 
and vegetative growth, whereas at minimum 
concentrations (0.5 L/ha and 300ml/ ha 
respectively) they had no effect on the fungal 
growth. Also Amizadeh et al., 2015 reported that, 
in metaflumizone treatments, no Bt colonies were 
formed.  

 

 Table (2): In vitro compatibility of Bacillus thuringiensis with some synthetic insecticides.  
 

Synthetic  
insecticides 
Treatments 

Emamectin  
benzoate 

Flufenoxuron Methomyl 
Lambada-  

cyhalothrin 
Chloropyrofos- 

methyl 
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RC 
4.138 x 1012 

± 
2.9038 x 1011 *** (f) 

4.13 x 109 
± 

8.7 x 107 *** (c) 

4.022 x 1011 
± 

7 x 109 *** (e) 

0 
± 

0 *** (a) 

Ve 
± 

0 *** (a) 

1 / 2 RC 
3.22 x 1013 

± 
6.557 x 1010 *** (g) 

4.13 x 1011 
± 

6.95 x 109 *** (e) 

4.092 x 1013 
± 

3.81 x 1011 (i) 

4.1 x 108 
± 

1 x 107 *** (b) 

Ve 
± 

0 *** (a) 

1 / 4 RC 
3.49 x 1013 

± 
5.43 x 1011 *** (h) 

4.1 x 1011 
± 

5.2 x 109 *** (e) 

4.16 x 1013 
± 

8.72 x 10 11 (i) 

4.07 x 1010 
± 

1.074 x 109 *** (d) 

Ve 
± 

0 *** (a) 

Control 4.028 x 1013 ± 2.90379 x 1011 (i) 

 
RC: Recommended concentrate, 1/2RC: Half of the Recommended concentrate 1/4RC: Fourth of the Recommended 
concentrate,   *: Without chemical insecticide, -ve: No growth, Ve: Values represent means ± SE M (n = 15), 

Significance level: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001 compared with control, The same letter in the same column 
represent no significant differences. 

 
Table (3): Efficacy of some synthetic insecticides and B. thuringiensis on 2nd larval instar 

of S. littoralis. 

Tested 
compounds 

Intervals 

2nd larval instar 

LC25  values in 
ppm (CL) 

LC50 values in 
ppm (CL) 

Slope 
± SE 

Chloropyrofos 
- methyl 

24 4.11 
( 1.92-5.99) 

10.42 
(7.41-15.60) 

1.67 
± 0.3749 

48 2.0866 
(0.7456- 3.32) 

4.82 
(2.89-6.59) 

1.86 
± 0.4018 

Lambda- 
cyhalothrin 

24 0.3055 
(0.1044-0.4824) 

0.8516 
(0.5622-1.2673) 

1.51 
± 0.3676 

48 0.1226 
(0.0465-0.2017) 

0.3508 
(0.2174 – 0.4943) 

1.48 
± 0.2796 

Methomyl 

24 5.24 
(2.46 – 7.99) 

14.91 
(10.27- 21.07) 

1.49 
± 0.2725 

48 3.22 
(1.28- 4.98) 

7.42 
(4.74- 10.06) 

1.86 
± 0.3945 

Emamectin 
benzoate 

48 0.0201 
(0.0099- 0.03011) 

0.0503 
(0.0346- 0.0681) 

1.69 
± 0.2885 

72 0.0112 
(0.0031- 0.019) 

0.0279 
( 0.0149- 0.0393) 

1.70 
± 0.3954 

Flufenoxuron 

48 0.1829 
(0.0757- 0.287) 

0.5035 
(0.3332- 0.6953) 

1.53 
± 0.2977 

72 0.0391 
(0.0148-0.0643) 

0.1154 
(0.0723 – 0.1634) 

1.44 
± 0.2751 

B. 
thuringiensis 

48 2.1x108 
(3.3x107 – 1x1011) 

2.6x1010 
(1.4x109 – 8.7x1010) 

0.321 
± 0.0982 

72 9.8x107 
(7x105 – 7.2x108) 

2.5 x109 
(2.4 x108 – 3.9 x1012) 

0.2802 
± 0.0830 

96 1.16 x105  
(0.3x 102- 1.3 x 106) 

7.9 x 108  
(1.1 x 107 – 6.44 x 109) 

0.2380 
± 0.0756 

168 3.1 x 103 (0.5 - 4.2 x 104) 1.5 x 105  
(2.9 x 103 – 7 X 105)  

0.3980 
± 0.1149 

            CL: Confidence limit.                                    SE: Standard error.              

Also, antibiotic activity of metaflumizone in 
combination with amitraz was reported on 
Malasseziapachydermatis (Weidman) yeast 
(Tarallo et al., 2009). Furthermore, Camargo 
(1983) observed that M. anisopliae is inhibited by 
different concentrations of pyrethroid insecticides. 

Deltamethrin had the highest inhibitory action. 

Efficacy of some synthetic insecticides and B. 
Thuringiensis spores against the 2nd larval 
instar of S. littoralis:  

The toxicity of the tested compounds 
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(chloropyrofos methyl, lambda cyhalothrin, 
methomyl, emamectin benzoate, flufenoxuron and 
B. thuringiensis spores) against the 2nd larval instar 
of S. littoralis at different times of exposure are 
shown in Table (3). 

Amongst all the tested synthetic insecticides, 
emamectin benzoate was the most effective 
compound after 48h of treatment as showed the 
lowest LC50 value (0.0503ppm), followed by 
lambda cyhalothrin and flufenoxuron with LC50 
values = of 0.3508 and 0.5035 ppm, respectively. 
While chloropyrofos-methyl and methomyl showed 
the least effective insecticides with LC50 value = of 
4.82 and 7.42 ppm, respectively. The bioagent, B. 
thuringiensis spores recorded LC50 value of 1.5 x 
105 ppm after 7days of treatment.   

There was a negative correlation between the 
time elapsed from treatment and the LC50 values of 
all tested compounds, as the toxicity increased with 
increasing period of exposure  (Table 3). . 

Use of Integrated pest management (IPM) 
protocols is important in achieving effective 
protection against pests and preventing their 
spread  

In this respect, the comparative efficacy of 
some insecticides belong to different groups with 
different mode of action was investigated in the 
current study to detect the most effective 
compound against the Egyptian cotton leafworm. 
Results confirm that the newer insecticides, 
emamectin benzoate and flufenoxuron have 
potentiating effects with low concentration against 
the larval instar of S. littoralis.  

 The present data are similar to that reported 
by other researchers (Khan et al., 2011; Bhatti et 
al., 2013; Rashwan et al., 2013; El- Sheikh, 2015; 
Metayi et al., 2015 and Maqsood et al., 2017) who 
compared the efficacy of emamectin benzoate with 
different types of insecticides and found that 
emamectin benzoate was the superior insecticides 
by recorded the lowest LC50 among the tested 
insecticides (deltamethrin, bifenthrin, 
chlorfluazuron, flubendamide, chlorpyrifos, 
profenofos, spinosad, indoxacarb, 
methoxyfenozide and lufenuron against S. littoralis 
larvae under laboratory condition. The toxicity of 
emamectin benzoate was studied on different 
insect species and showed high toxic effects 

against a wide variety of lepidopterans (Argentine 
et al., 2002; Firake and Pande, 2009 and El-
Sheikh, 2015). In addition Abd-El-Aziz (2014); 
Saleh et al. (2015); EL-Dewy (2017) and Ismail et 
al. (2017) reported that emamectin benzoate LC50 
value ranged from 0.007 to 1.35 ppm against 4th 
larval instar of S. littoralis laboratory strain.  

Flufenoxuron in the present study showed high 
toxicity to 2nd instar larvae of S. littoralis. This 
toxicity was less than that of emamectin benzoate 
based on LC50 value. These results agree with that 
obtained by Saad et al. (2011) who revealed that 
emamectin benzoate was more toxic than 
lufenuron and flufenoxuron against 2nd, 3rd and 4th 
instar larvae of S. littoralis.  Furthermore Ishtiaq et 
al. (2012) found that populations of S. exigua are 
more susceptible to emamectin benzoate and 
lufenuron compared to pyrethroid and 
organophosphorous insecticides. S. exigua 
developed no to moderate resistance to emamectin 
benzoate and lufenuron (as CSIs) and thus these 
compounds are environmentally safe and could be 
used in IPM and in pesticide resistance 
management programmes (Ishtiaq et al. (2012). 

Interaction between B. thuringiensis spores 
suspensions and some synthetic insecticides: 

Potentiation, antagonistic and additive 
interaction effects were observed upon application 
of LC25 of the tested insecticides in combination 
with LC50 of Bt or after 24h from treating the 2nd 
instar larvae with Bt as shown in Tables (4 and 5).  

Results indicated that emamectin benzoate 
exhibited the highest potentiation effect, where Co-
Toxicity Factor (CTF) value was 50 when applied 
in combination with Bt at zero time and was 22.73 
after 24 h from treating the larvae with Bt. On the 
other hand, chloropyrofos-methyl and methomyl 
gave remarkable antagonistic effect (-43.48 and -
25), respectively when applied in combination with 
Bt at zero time. In contrary, the potentiation effect 
(31.58) was observed when chloropyrofos-methyl 
applied after 24 h from treating the larvae with Bt, 
while treatment with methomyl caused additive 
effect (11.77).  

 
 
 

Table (4): Observed percentage mortality of some synthetic insecticides and B. thuringiensis   
against 2nd larval instar of S. littoralis at different times after treatment. 

 

Tested  
compounds 

Concentration 
 level 

Observed (%) mortality 

After  
24 hr. 

After  
48 hr. 

After  
72 hr. 

After  
96 hr. 

After  
168 hr. 

Chloropyrofos- LC25 13.33 26.67 30 43.33 - 
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 methyl 

Lambda- 
 cyhalothrin 

LC25 16.67 30 33.33 43.33 - 

Methomyl LC25 10 23.33 23.33 33.33 - 

Emamectin  
benzoate 

LC25 6.67 13.33 26.67 40 - 

Flufenoxuron LC25 3.33 10 30 53.33 - 

B. thuringiensis LC50 6.67 10 23.33 33.33 56.66 

 
 
In case of lambada-cyhalothrin and 

flufenoxuron treatments, additive effect was 
noticed with CTFs values ranged from 18.18 - 
15.79 at the two time intervals. 

 Application of Bt at LC50 in combination 
with LC25 of tested insecticides at (zero time) 
showed positive effect (Table 5) than when applied 
separately (Table 4) by increasing the larval 
mortality thereby causing potentiation effect with 
emamectin benzoate treatment and additive effect 
with lambada- cyhalothrin and flufenoxuron 
treatments. While, antagonistic effect was 
observed in case of methomyl and Chloropyrofos-
methyl treatments.  

Similar finding was reported by Salama et al., 
1984 who found that mixtures of pyrethroid-based 
insecticides have been shown to potentiate the 
activity of the microbial, B. thuringiensis Berliner 
subsp. galleriae against the cotton leafworm, S. 
littoralis, and B. thuringiensis subsp. kurstaki 
against the fall armyworm, S. frugiperda (J. E. 
Smith) (Habib and Garcia 1981). Also Luo et al. 
(1986) reported that a small amount of fenvelerate 
along with B. thuringiensis resulted in an increased 
lint yield in cotton when used against Pectinophora 
gossypiella Saunders. Moreover, Amizadeh et al. 
(2015) observed an antagonistic effect between Bt 
(at LC50) with abamectin, azadirachtin, indoxacarb, 
chlorantraniliprole, dichlorovos and metaflumizone 
(at LC10 and LC25) for control of Tuta absoluta, 
where Bt was applied immediately after the 
chemical insecticides. Also, antagonism was 
observed when treatment with Bt was done 12 h 
after azadirachtin and metaflumizone applications 
Amizadeh et al. (2015).  Farooq and Freed 
(2016) found that the insecticides acetamiprid, 
emamectin benzoate, imidacloprid and lufenuron in 
combination with insect pathogenic fungi showed 
higher mortality than expected with significant 
synergistic interactions when tested as a bait 
against M. domestica.   Furthermore, the 
combination of entomopathogenic fungi and 
synthetic insecticides can decrease the 

concentrations of the active ingredient required.  
Khalifa et al. (2015) investigated the effect of 

applying mixtures of chlorantraniliprole (LC50, LC25 
and LC12.5) with Bt (LC50, LC25 and LC12.5) against 
the 4th larval instar of  Spodoptera littoralis. They 
reported that the mixture of chlorantraniliprole (at 
LC50 and LC25) with Bt ( at LC50 and LC25) resulted 
in an antagonistic effect while, the mixture of 
chlorantraniliprole ( at LC12.5) with Bt ( at LC12.5) 
resulted in an additive effect. Also, the antagonistic 
effect that was observed in the present study when 
applied methomyl in combination with Bt at zero 
time was confirmed with results obtained by Abdel-
Aal and El- Shikh (2012) who recorded an 
antagonistic effect with Co-Toxicity factor -29.98 
after treatment the 2nd instar larvae of S. littoralis 
with mixture of Bt and  methomyl  at LC25 level. 

On the other side, using all the tested 
insecticides at (LC25) after 24 h of exposure to LC50 

of Bt exhibited an additive and potentiation effects 
in the present study. It seems that, Bt might be 
acting as a stressor;  making the larvae more 
susceptible to death, and leading to a final  positive 
effect. Similarly, Amizadeh et al. (2015) reported 
that, applying Bt 12 and 24 h after treatment with 
LC25 of chlorantraniliprole, dichlorovos and 
abamectin resulted in synergism. Also, synergism 
with LC10 of dichlorovos and abamectinwas 
observed only after 12 h.  
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Table (5): Interaction between LC50 of B. thuringiensis with LC25 of some synthetic insecticides 
on 2nd larval instar  of  S. littoralis. 

 

Tested 
insecticides 

Intervals 
(hours) 

Observed (%) mortality Expected (%) mortality Co toxicity factor 

Interaction 
After 96h After 

 48 h 
After 
 72 h 

After 
 96 h 

After 
48 h 

After 
72 h 

After 
96 h 

After  
48 h 

After 
72 h 

After 
96 h 

Chloropyrofos- 
 methyl 

0 30 36.67 43.33 36.67 53.33 76.66 -1817 -31.26 - 43.48 Antagonistic 

Lambda- 
cyhalothrin 

0 36.67 56.67 83.33 40 56.67 76.66 -8.35 0 8.70 Additive 

Methomyl 0 33.33 40 50 33.33 46.67 66.67 0 -14.27 - 25.00 Antagonistic 

Emamectin 
benzoate 

0 30 66.6.7 90 23.33 50 73.33 28.59 33.32 22.73 Potentiation 

Flufenoxuron 0 26.67 60 83.33 20 53.33 86.67 33.3 12.5 - 3.84 Additive 

Chloropyrofos-  
methyl 

24 30 66.67 83.33 23.33 50 63.33 28.59 33.32 31.58 Potentiation 

Lambda- 
cyhalothrin 

24 36.67 73.33 96.67 26.67 53.33 66.67 37.51 37.50 45.00 Potentiation 

Methomyl 24 23.33 43.33 63.33 20 46.67 56.67 16.65 -7.14 11.77 Additive 

Emamectin 
benzoate 

24 20 56.67 86.67 16.67 26.67 60 0 54.56 50 Potentiation 

Flufenoxuron 24 10 46.67 73.33 13.33 33.33 63.33 -24.98 40.00 15.79 Additive 
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Peters and Ehlers (1994) reported that, bacterial 
infestation could cause a loss of defense reactions 
like suppression of encapsulation against the 
invading EPNs. 

Collectively, results indicated that, combined 
application of Bt with lambada-cyhalothrin or 
emamectin benzoate or flufenoxuron at low 
concentrations may improve the efficacy of Bt to 
control 2nd instar larvae of S. littoralis, reduce the 
amounts of synthetic insecticides and thus reduce 
environmental pollution and cause less harm to 
natural enemies and human. While mixing of 
methomyl and chloropyrofos-methyl with Bt is not 
useful for controlling this insect and reduced the 
efficacy of these insecticides. In additions, to 
achieve additive or potentiation effects, the larvae 
should be exposed to Bt for 24 h before the addition 
of the tested insecticide at (LC25), because of Bt 
may be acting as a stressor.  

The use of reduced application rates is also in 
line with IPM programmes (Georghiou, 1994). 
Lower rates of insecticides, would decrease the 
harm to natural enemies present in the ecosystem. 
This leads to effective control of the pest and also 
delays the development of insecticides resistance. 
Moreover, the sequence of using Bt as stressing 
the insect resulting in enhanced the efficacy of the 
synthetic insecticides at low rates  which in turn 
controls the insects with resistance alleles not 
controlled by the insecticides. Variation in 
capability and the nature of interaction depends the 
species and strain of the entomopathogen, host 
species, application timing and the type of 
insecticides used (Anderson et al., 1989 and 
Mannion et al., 2000). 

CONCLUSION 
Combination of Bt with synthetic insecticides 

increased the efficacy of some insecticides but not 
at all cases and at all time intervals. There is a need 
to screen all group of synthetic insecticides on field 
level to quantify insecticide performance at the 
farm level.  If the additive or potentiation effect of 
combinations of the synthetic insecticides with Bt 
confirmed in the field level, this approach may be a 
useful tool of integrated management of S. littoralis. 
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