

Available online freely at www.isisn.org

Bioscience Research

Print ISSN: 1811-9506 Online ISSN: 2218-3973 Journal by Innovative Scientific Information & Services Network

RESEARCH ARTICLE BIOSCIENCE RESEARCH, 2019 16(3):3061-3075. OPEN ACCESS

Characterization and 16S rDNA identification of halophilic bacteria

Mohamed Abou-Ellail¹, Rafat Khalaphallah² and Karam A. Amein³

¹Department of Genetics, Faculty of Agriculture and Natural Resources, Aswan University, Aswan, **Egypt**. ²Department of Botany (Microbiology), Faculty of Agriculture, South Valley University, Qena, **Egypt**. ³Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, **Egypt**.

*Correspondence: mohamed.abouellail@agr.aswu.edu.eg Accepted: 30 July 2019 Published online: 11 Sept. 2019

Salinity-tolerant bacteria from the surface of salted fish samples were isolated on Ashby's medium. The isolates were purified and identified based on morphology, biochemical tests, phenotypic and 16S rDNA sequences. The results showed a total of eight isolates; isolates No. 1, 2 and 8 presented in a phylogenetic cluster with species belonging to the genus *Cronobacter* and were closely related to *C. condimenti, C. malonaticus, C. sakazakii BQ16, C. sakazakii Jor1468, C. dublinensis* and *C. muytjensii*. Isolate No. 3 was most closely related to *Bacillus oceanisediminis*A3a, *Bacillus firmus* PX28 and *Bacillus subtilis* HAU5. Isolate No. 4 was closely related to *Bacillus mojavensis*ZA1 and then to several other species of *Bacillus*. Isolate No. 7 was closely related to *Bacillus pumilus* p51H01 and *Bacillus safensis* SDS101.Isolate No. 5 was clustered with three different genera: *Alcaligenes faecalis, Rhodobacter sphaeroides* and *Pusillimonas_sp*. Isolate No. 6 was separated alone in the last cluster. Further studies are required to identify these isolates, which are potential type strains for novel species.

The bacteria grew over a wide range of salinity, i.e., 10-30‰ w/v NaCl, while none of the bacteria isolated at the highest salinity range (30 to 33%) grew at 15% salt concentration. Salinity-tolerant bacterial isolates have attracted the attention of agriculturists as soil inoculums to improve plant growth and yield in saline soils. The widespread use of halotolerant bacteria in these saline water bodies is of great interest for future research and biotechnological development.

Keywords:salt tolerance; salinity; halophilic bacteria; phynotypic; 16S rDNA

INTRODUCTION

different Halophiles use physiological, morphological and genetic mechanisms to deal with environmental conditions (Oren, 2008). A high-saline environment could cause proteins, including enzymes, to denature, leading to reduced enzyme activity and DNA damage (DasSarma and DasSarma, 2006), which could result in changes in bacterial genetic material. Halophilic microorganisms can be isolated from various sources, such as salted fish (Hezayen et al., 2010), brine wells (Xiang et al., 2008), salt lakes (Swan et al., 2010), salterns (Bardavid et al., 2007) and salt mines (Chen et al., 2007). Insertions and/or repeat elements as well as

specific protein-coding or structural genes, act as phylogenetic markers. Among these markers, rRNA molecules such as 5S, 16S, 23S and spacers can be used for phylogenetic analyses, but the 5S rRNA and 23S rRNA genes have restricted use. However, the 16S rRNA gene is the most commonly used marker (Mora and Amann, 2001). The first use 16S rRNA gene sequences for phylogenetic tree construction occurred in 1985 (Lane et al., 1985). 16S rRNA has become the most widely used reliable marker for the taxonomic classification and phylogenetic microorganisms (Tringe analysis of and Hugenholtz, 2008 and Yang et al., 2016)

The goal of this study was to identify the

bacterial unknowns isolated from salted fish by morphological and 16S rRNA genes.

MATERIALS AND METHODS

Sample collection

Eight samples of salted fish were obtained from Aswan Governorate, Upper Egypt. Approximately 10 grams of fish tissue was collected from each fish and placed in clean sterile glass bottles. The bottles were kept in an ice-chest box, transported to the laboratory and processed within 24 hrs. The salinity of the fish tissue was determined immediately in the laboratory using electrical conductivity (EC), and pH was measured by a EC and pH meter. All experiments were carried out in duplicate, with uninoculated tubes serving as control experiments.

Bacterial strains and growth conditions

Sixteen bacterial strains were isolated and grown on enriched nutrient agar (NA) medium, which contained the following components (g/l): beef extract, 3 sources of growth factors, peptone extract, 5.0 g of energy source, and 15 g/l agar. The medium solidified, and pH was adjusted to 7.2. The bacterial strains cultured on basal medium contained the following components (q/l): NaCl 225, MgSO4 7 H2O 5 S, Mg++ source, KCl 2.0 K+ source and yeast extract 1.0, which was used for bacterial growth on different substrates, as well as for testing enzymatic and biochemical activities and measuring the ability of the strains to grow on the saline media. The eight isolates grown on basal media were assigned the symbol "a" (1a-8a), while the other bacteria grown on NA were used as a control.

Morphological and physiological tests:

The colonies of the isolate hallo bacteria were described on the NA and NA with NaCl media. Bacteria were studied after isolation by performing preliminary microscopic examinations of the following characteristics: form (the shape of the colony), margins, pigmentation, elevation and gram staining results. Pure cultures of randomly selected bacterial isolates were identified on the basis of their colonial morphology and cellular morphology characteristics according to the method of Cowan and Steel (1960). A series dilution was prepared with 1 g fish tissue in a glass tube and then cultivated in Petri dishes and incubated at 28 °C for 4 days. The bacterial colonies were diagnosed, purified in isolation medium several times and then transferred to a

refrigerator until their use in further experiments. Then, plates were incubated at 28°C for 48 h. Different distinct colonies were repeatedly subcultured every 48 h onto newly prepared NA plates until pure cultures were obtained. The bacterial cell growth response to sodium chloride was examined in solid nutrient and basal nutrient salt media. Then, deep glucose agar tests were conducted to determine the oxygen requirements of the microorganisms incubated at 40° C for 3 days.

Biochemical tests:

Biochemical tests were performed according to the method of Balleroni (1984) to determine the microorganisms' requirements for oxygen. Deep glucose agar tests were performed based on catalase and oxidase activities, nitrate reduction and starch hydrolysis. The oxidase activity tests were conducted according to Kovace (1956). Catalase activity was shown by adding drops of 3% hydrogen peroxidase to agar colonies; oxygen bubbles indicated a positive test, according to Facklam (1995). The hydrolyse starch (amylose and amylopectin) was determined following Bailey using basal salt agar medium (1986)supplemented with 1 soluble starch (% w/v).

DNA isolation and PCR conditions

The bacterial genome was purified according to Wilson (1987) from a 5 ml liquid culture of eight isolated bacteria. DNA was re-suspended in 100 μ l of Tris-EDTA (TE) buffer (pH 8.0) and stored at -20°C.

A partial fragment of 16S rDNA (expected size709 bp) was amplified and sequenced using universal primers published by Sauer et al., 2005: rDNA forward 16S 5'-GTGTAGCGGTGAAATGCG-3' and 16S rDNA reverse 5'-ACGGGCGGTGTGTACAA-3'. A 25 µl PCR mix was prepared as follows: 5 µl of 5X green buffer, 4 µL of MgCl₂ (25 mM), 0.25 µl of GoTag DNA polymerase (5 U/µl) (GoTag® Hot Start Polymerase, Promega), 1 µl of primers (100 µM), 0.5 µl of dNTPs (10 mM) and 50 ng DNA of tested bacterial isolate, and nuclease-free water to the final volume of 25 µl. The PCR steps were as follows: 94°C for 5 min, followed by 30 cycles of 94°C for 45 sec, 55°C for 45 sec for annealing and 72°C for 1 min for elongation. The amplification fragment with a length of 709 bp was visualized with GelRed Nucleic Acid Gel Stain (Biotium) after gel electrophoresis in a 1.5% agarose gel (Genetics).

Sequencing

The 16S rDNA PCR products were used for sequencing by the 3100 Genetic Analyser sequencer (Applied Biosystems). To find similar sequences, the 16S rDNA sequences of the isolates were compared with sequences available in the NCBI GenBank database by a BLAST search(http://blast.ncbi.nlm.nih.gov/Blast.cgi).

Three partial sequences of 16S rDNA were obtained from http://blast.ncbi.nlm.nih.gov/Blast.cgi, and two of our sequences were used to construct the UPGMA phylogenetic tree. Phylogenetic analyses were conducted in MEGA4 (Tamura et al., 2007). Sequence alignments were carried out using the site http://www.ebi.ac.uk/Tools/msa/clustalw2/.

RESULTS

Table (1) shows that the salted fish samples contained 34.1% fresh weight and 71.22% dry weight organic matter contents. Total soluble salts (TSS) and total salts (TS) were relatively high (100.95 mg/g and 133.2, respectively). The pH value was approximately 7.0-8.5, and the samples were slightly alkaline. The contents of elements related to salinity were 32.5, 0.038, 1.5 and 0.25 mg/g for and Na, Ca, K, and Mg, respectively.

Table (1)Chemical characteristics of salted fish samples *

Parameter ^a	Average SD ^b
OM mg/g	339.1±8.2
MC%	53.1±1.2
рН	7-8.5
TS mg/g fresh weight	133.2±7.5
TSS mg/g fresh weight	100.95±5.5
Na	32.5±8.08
Ca	0.038±0.01
К	1.5±0.4
Mg	0.25±0.1

*OM: Organic matter, MC%: Moisture content percentage,

TS: Total salts. TSS: Total soluble salts. ^b Standard deviation. ^aAverage of 30 samples

The results showed that a number of bacterial colonies isolated from the salted fish were different (Table 2). The highest number of bacteria was 5×10^4 /gram fresh tissue, while the lowest number of bacteria was 1×10^2 gram fresh tissue. Morphological, physiological and biochemical tests diagnosed eight bacterial isolates. Morphologically and biologically, isolates 1, 2 and 8 were gram-negative; regarding shape, five isolates appeared rod-long and rod-shaped. The numbers 1, 2, 3, 4, 5, 6, 7 and 8 indicate bacterial

growth on NA. and 1a, 2a, 3a, 4a, 5a, 6a, 7a and 8a indicate bacterial growth on NB media with NaCl. The results of the biochemical tests for all bacteria strains were positive for catalase and starch. Some of the strains were positive for oxides and nitrate reduction, while these tests were negative for other strains. The physiological data show that five bacterial isolates were mandatory aerobic bacteria, and 3 bacterial isolates were facultative aerobic bacteria. The pH for all microbes was approximately 7.5-8.5.

To identify eight bacterial strains isolated from salted fish, we used morphological and molecular approaches. A partial sequence of 16S rDNA was utilized to characterize the strains at the molecular level. After isolation and 16S rDNA sequencing, the search programs Entrez and BLAST were used to find similar sequences published in the NCBI database. A maximum likelihood phylogenetic tree was constructed using our sequences and similar sequences from the NCBI database. The phylogenetic tree presents six clusters, as shown in Fig. (1). The first cluster contains isolates No. 1, 2 and 8, which present with some species belonging to the genus Cronobacter and are closely related to the species C. condimenti, C. malonaticus, C. sakazakii BQ16. C. sakazakii Jor1468. C. dublinensis and C. muytjensii. In the second cluster, isolate 5 is found with Alcaligenes faecalis, Rhodobacter sphaeroides and Pusillimonas sp. Isolate 3 is in a third cluster that includes Bacillus oceanisediminis, Bacillus firmus and Bacillus subtilis HAU5. Moreover, isolate 4 is in a fourth cluster and is closely related to Bacillus mojavensisZA1 and then to several species of Bacillus, such as B. subtilis D221, B. tequilensis, mojavensis. В. thuringiensis, В. В. В. methylotrophicus. amvloliquefaciens. В. siamensis. B. vallismortis. B. cereus. В. sonorensisand B. axarquiensis. The fifth cluster consists of isolate No. 7, which is closely related to Bacillus pumilus p51H01 and B. safensis SDS101. Isolate 6 is found alone in a unique cluster.

To prove the pedigree of our unknown isolates, alignments of partial 16Sr DNA sequences of these isolates were created using http://www.ebi.ac.uk/Tools/msa/clustalo/.The results are shown in Fig. (2).

Tests		1	2	3	4	5	6	7	8
Bacteria	Characteristics	1a	2a	3a	4a	5a	6a	7a	8a
Mophological tests	G. Stain	G-	G-	G+	G+	G-	G+	G+	G-
	Margins	convex	wavy	wavy	wavy	m.entire	m.entire	convex	convex
	color	-	-	white	white	purple	-	white	-
	Elevation	Flat	Flat	umbonate	umbonate	Flat	Flat	umbonate	Flat
	shape	Rod-long	Rod-long	rods	Rods	Rod-long	Rod-long	Rods	Rod-long
-	Catales	+	+	++	++	++	+	++	+
ogica ests	Oxidase	-	-			+	+	-	-
	Nitrat redicase	+	+	-	-	-	-	-	+
Biol	Starch hydrolysis	+	+	+	++	+	+	+	+
Physiological tests	O₂. depending	f. anaer	f. anaer	aerobic	aerobic	aerobic	aerobic	aerobic	f. anaer
	рН	7.5	8	7	7.5	8	8.5	7.5	8

Table (2): The numbers 1 to 8 indicate different bacterial samples, and the numbers 1a to 8a indicate bacteria grown on NB media with NaCl

Our isolates exhibited high similarities among each other (Table 3). Isolate 1 is 88.63% and 82.97% similar to isolate 2 and isolate 8, respectively. Furthermore, isolate 2 is 89.7% similar to isolate 8. Additionally, Fig. (2) shows the similarities between isolates 1, 2 and 8 and other species belonging to the genus *Cronobacter* from the NCBI database. The highest similarities are found between isolates 1, 2 and 8 and the species *C. sakazakii, C. malonaticus* and *C. condimenti,* with percentages of 81.46%, 88.34% and 92.53, respectively.

Moreover, based on the similarity matrix Fig. (3), isolate 4 belongs to the genus *Bacillus* and is more than 96% similar to *B. subtilis, B. mojavensis, B. amyloliquefaciens, B. axarquiensis, B. sonorensis, B. cereus, B. vallismortis, B. siamensis, B. methylotrophicus, B.*

tequilensis and B. thuringiensis. The highest similarity is between isolate 4 and B. subtilis, with a percentage of 96.37%. The lowest similarity is 96.06% between isolate and 4 В. amyloliquefaciens. Isolate 3 shows 94.09%, 94.23% and 94.08% similarity to В. oceanisediminis, B. firmus and B. subtilis, respectively (Fig. (4)). In addition, as shown in Fig. (5), isolate 7 displays 76.82% and 76.77% similarity to B. pumilus and B. safensis, respectively. Furthermore, Isolate 5 shows Pusillimonas, Rhodobacter similarity to sphaeroides and Alcaligenes faecalis, with percentages of 91.35%, 91.35% and 91.49%, respectively (Fig. (6)). However, the isolate 6 sequences do not match any sequences in the NCBI database.

Table 3. 16S rRNA sequencing analysis results for isolates from salted fish.

Isolate number	No. of bp sequenced	Similarity with nearest type strain (%)	Tentative identification based on nearest neighbour		
		92.53	Cronobacter condiment LMG26250		
1	709	88.34	CronobactermalonaticusBR-1		
		81.46	CronobactersakazakiiBQ16		
2		92.53	Cronobacter condiment LMG26250		
	709	88.34	CronobactermalonaticusBR-1		
		81.46	CronobactersakazakiiBQ16		
3	709	94.23	Bacillus firmuPX28		
		94.09	Bacillus oceanisediminisA3a		
		94.08	Bacillus subtilis HAU5		
4	709	96.37	Bacillus subtilis D221		
5	709			91.49	Alcaligenesfaecalis EGU38
		91.35	Pusillimonassp.		
		91.35	Rhodobactersphaeroides L.		
6	709				
7	709	76.82	Bacillus pumilusp51H01		
		76.77	Bacillus safensisSDS101		
8	709	92.53	Cronobacter condiment LMG26250		
		88.34	CronobactermalonaticusBR-1		
		81.46	CronobactersakazakiiBQ16		

Figure 1: The maximum likelihood phylogenetic tree constructed using our eight isolated sequences and similar sequences collected from the NCBI database site.

```
Samplel
Sample2
Sample8
Cronobacter_sakazakii_BQ16
Enterobacter_sp._C5
Cronobacter_malonaticus_BR-1
Cronobacter_condimenti_LMG26250
Cronobacter_sakazakii_Jor1468
Cronobacter_muytjensii_MBG5
Cronobacter_dublinensis_CH3197
Samplel
Sample2
Sample8
Cronobacter_sakazakii_BQ16
Enterobacter_sp._C5
Cronobacter_malonaticus_DR-1
Cronobacter_condimenti_LMG26250
Cronobacter_sakazakii_Jor1468
Cronobacter_muytjensii_M8G5
Cronobacter_dublinensis_CHJ197
Samplel
Sample2
Sample8
Cronobacter_sakazakii_BQ16
Enterobacter_sp._C5
Cronobacter_malonaticus_BR-1
Cronobacter_condimenti_LMG26250
Cronobacter_sakazakii_Jor1468
Cronobacter_muytjensii_MBG5
Cronobacter_dublinensis_CH0197
                                          Sample1
Sample2
Sample8
Cronobacter_sakazakii_BQ16
Enterobacter_sp._C5
Cronobacter_malonaticus_8R-1
Cronobacter_condimenti_LMG26250
Cronobacter_sakazakii_lor1468
Cronobacter_muytjensii_MBG5
Cronobacter_dublinensis_CH3197
Samplel
Sample2
Sample8
Cronobacter_sakazakii_BQ16
Enterobacter_sp._C5
Cronpbacter_malonaticus_BR-1
Cronobacter_condimenti_LMG26250
Cronobacter_sakazakii_Jor1468
Cronobacter_muytjensii_MBG5
Cronobacter_dublinensis_CHJ197
Samplel
Sample2
Sample8
Cronobacter_sakazakii_BQ16
Enterobacter_sp._C5
Cronobacter_malonaticus_BR-1
Cronobacter_condimenti_LMG26258
Cronobacter_sakazakii_Jor1468
Cronobacter_muytjensii_MBG5
Cronobacter_dublinensis_CHJ197
```

GGTGCTGCCTCGGTGTCCTCCCCTCCTTTTGTGAAAATTTTGGGTAAGTCCCGCCACGAG GGTGCTGCCTGGATGTCGTCCCCTCCTTTTGTGAAAAGTTTGGGTAAGTCCCGCCACGAG GGTGCTGCATGGCTGTCGTCGTCGTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCCACGAG GGTGCTGCATGGCTGTCGTCGTCGTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCCACGAG GGTGCTGCATGGCTGTCGTCGTCGTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCCACGAG GGTGCTGCATGGCTGCGTCGTCGTCGTGTGTGAAATGTTGGGTTAAGTCCCGCAACGAG GGTGCTGCATGGCTGCGTCGTCGTCGTCGTGTGTGAAATGTTGGGTTAAGTCCCGCAACGAG GGTGCTGCATGGCTGCGTCGTCGTCGTGTGTGAAATGTTGGGTTAAGTCCCGCAACGAG GGTGCTGCATGGCTGCGTCGTCGTCGTCGTGTGGAAATGTTGGGTTAAGTCCCGCAACGAG GGTGCTGCATGGCTGCGTCGTCGTCGTCGTGTGTGAAATGTTGGGTTAAGTCCCGCAACGAG GGTGCTGCATGGCTGTCGTCGTCGTCGTCGTGTGGAAATGTTGGGTTAAGTCCCGCAACGAG GGTGCTGCATGGCTGTCGTCGTCGTCGTCGTGTGGAAATGTTGGGTTAAGTCCCGCAACGAG

GGGGACCCTTAGATTTATTGACTAAA-ATTCGGTCGGCAACTCTTAGGAGACTGCCGGT CGGGACCCTTATGCTTTGTTGCCATCA-ATTCGGTGGGCAACTCATAGGAGACTGCCGGT CGCGATCTTTATGCTTTGTTGCCACG-ATTCGACGGGCAACTCATAGGACACTGCCGGT CGCAACCCTTATCCTTTGTTGCCAGCG-GTTCGGCCGGGAACTCAAAGGAGACTGCCGGT CGCAACCCTTATCCTTTGTTGCCAGCG-GTTCGGCCGGGAACTCAAAGGAGACTGCCGGT CGCAACCCTTATCCTTTGTTGCCAGCG-GTTCGGCCGGGAACTCAAAGGAGACTGCCGGT CGCAACCCTTATCCTTTGTTGCCAGCG-GTTCGGCCGGGAACTCAAAGGAGACTGCCGGT CGCAACCCTTATCCTTTGTTGCCAGCG-GTTCGGCCGGGAACTCAAAGGAGACTGCCGGT CGCAACCCTTATCCTTTGTTGCCAGCG-GTTCGGCCGGGAACTCAAAGGAGACTGCCGGT CGCAACCCTTATCCTTTGTTGCCAGCG-GTTCGGCCGGGAACTCAAAGGAGACTGCCGGT CGCAACCCTTATCCTTTGTTGCCAGCACGTCATGGTGGGAACTCAAAGGAGACTGCCGGT CGCAACCCTTATCCTTTGTTGCCAGCACGTCATGGTGGGAACTCAAAGGAGACTGCCGGT

GATAAACCGTAGGAAGG-TGGCCATGACGTCAAATCATCATGGCCCTTACGACCAGGGCT GATAAACCGTAGAATTT TGGCGATGACGTCAAATCATCATGGCCCTTACGACCAGGGCT GATAAACCGGAGGAAGG-TGACCATGACGTCAAGTCATCATGGCCCTTACGACCAGGGCT GATAAACCGGGAGGAAGG-TGGGGATGACGTCAAGTCATCATGGCCCTTACGACCAGGGCT GATAAACCGGGAGGAAGG-TGGGGATGACGTCAAGTCATCATGGCCCTTACGACCAGGGCT GATAAACCGGGAGGAAGG-TGGGGATGACGTCAAGTCATCATGGCCCTTACGACCAGGGCT GATAAACCGGGAGGAAGG-TGGGGATGACGTCAAGTCATCATGGCCCTTACGACCAGGGCT GATAAACCGGGAGGAAGG-TGGGGATGACGTCAAGTCATCATGGCCCTTACGACCAGGGCT GATAAACCGGGAGGAAGG-TGGGGATGACGTCAAGTCATCATGGCCCTTACGACCAGGGCT GATAAACCGGGAGGAAGG-TGGGGATGACGTCAAGTCATCATGGCCCTTACGACCAGGGCT GATAAACCGGAGGAAGG-TGGGGATGACGTCAAGTCATCATGGCCCTTACGACCAGGGCT GATAAACCGGAGGAAGG-TGGGGATGACGTCAAGTCATCATGGCCCTTACGACCAGGGCT GATAAACCGGAGGAAGG-TGGGGATGACGTCAAGTCATCATGGCCCTTACGACCAGGCCT

ACACACGTGCTACAATGGCGCAAACACAGAGCTGCAACCTCGCCAGAGTTAACGGATCTC ACACACGTGCTACAATGGCGCATACACAGAGCAGCGACCTCGCCAGAGTTAGCGGACCTC ACACACGTGCTACAATGGCGCATACAAAGAGAAGCGACCTCGCGAGAGCAAGCGGACCTC ACACACGTGCTACAATGGCGCATACAAAGAGAAGCGACCTCGCGAGAGCAAGCGGACCTC

TAGTAATCGCGGATCATAATGCCCCGG-TGCACACCCTTCCCCGGGCCTTGT-TAGTAATCGTGGATCATAATGCCCCGG-TGAATA-CCTTCCCTGGCCTTGT-TAGTAATCGTGGATCATAATGCCACGG-TGAATA-CCTTACCGGGCGTGT-TAGTAATCGTGGATCAGAATGCCACGG-TGAATA-CGTTCCCGGGCCTTGT-TAGTAATCGTGGATCAGAATGCCACGG-TGAATA-CGTTCCCGGGCCTTGT-TAGTAATCGTGGATCAGAATGCCACGG-TGAATA-CGTTCCCGGGCCTTGT-TAGTAATCGTGGATCAGAATGCCACGG-TGAATA-CGTTCCCGGGCCTTGT-TAGTAATCGTGGATCAGAATGCCACGG-TGAATA-CGTTCCCGGGCCTTGT-TAGTAATCGTGGATCAGAATGCCACGG-TGAATA-CGTTCCCGGGCCTTGT-TAGTAATCGTGGATCAGAATGCCACGG-TGAATA-CGTTCCCGGGCCTTGT-TAGTAATCGTGGATCAGAATGCCACGG-TGAATA-CGTTCCCGGGCCTTGT-TAGTAATCGTGGATCAGAATGCCACGG-TGAATA-CGTTCCCGGGCCTTGT-TAGTAATCGTGGATCAGAATGCCACGG-TGAATA-CGTTCCCGGGCCTTGT-

Figure 2: Partial sequence alignment for the PCR products of the 16S rRNA genes of three bacterial samples isolated from salted fish (isolate 1, isolate 2 and isolate 8) and other high-similarity sequences published in the NCBI-GenBank database.

F_Sample4

Bacillus_subtilis_D221 Bacillus_tequilensis_NA-10 Bacillus_thuringiensis_DeSa1 Bacillus_mojavensis_ZA1 Bacillus_amyloliquefaciens_NSP6 Bacillus_methylotrophicus_Y-2 Bacillus_siamensis_RD_MATFA_04 Bacillus_vallismortis_IARI-DSB17 Bacillus_cereus_NCIM2217 Bacillus_sonorensis_BGAS391 Bacillus_axarquiensis_BCR30A

F Sample4

Bacillus_subtilis_D221 Bacillus_tequilensis_NA-10 Bacillus_thuringiensis_JeSa1 Bacillus_mojavensis_ZA1 Bacillus_amyloliquefaciens_NSP6 Bacillus_methylotrophicus_Y-2 Bacillus_siamensis_RD_MATFA_04 Bacillus_vallismortis_IARI-DSB17 Bacillus_cereus_NCIM2217 Bacillus_sonorensis_BGAS391 Bacillus_axarquiensis_BCR30A

F Sample4

Bacillus_subtilis_D221 Bacillus_tequilensis_NA-10 Bacillus_thuringiensis_JeSa1 Bacillus_mojavensis_ZA1 Bacillus_amyloliquefaciens_NSP6 Bacillus_methylotrophicus_Y-2 Bacillus_siamensis_RD_MATFA_04 Bacillus_vallismortis_IARI-DSB17 Bacillus_cereus_NCIM2217 Bacillus_sonorensis_BGAS391 Bacillus_axarquiensis_BCR30A

F_Sample4

Bacillus_subtilis_D221 Bacillus_tequilensis_NA-10 Bacillus_thuringiensis_JeSa1 Bacillus_mojavensis_ZA1 Bacillus_amyloliquefaciens_NSP6 Bacillus_methylotrophicus_Y-2 Bacillus_siamensis_RD_MATFA_04 Bacillus_vallismortis_IARI-DSB17 Bacillus_cereus_NCIM2217 Bacillus_conorensis_BGAS391 Bacillus_axarquiensis_BCR30A

F Sample4

Bacillus_subtilis_D221 Bacillus_tequilensis_NA-10 Bacillus_thuringiensis_JeSa1 Bacillus_mojavensis_ZA1 Bacillus_amyloliquefaciens_NSP6 Bacillus_methylotrophicus_Y-2 Bacillus_siamensis_RD_MATFA_04 Bacillus_vallismortis_IARI-DSB17 Bacillus_cereus_NCIM2217 Bacillus_sonorensis_BGAS391 Bacillus_axarquiensis_BCR30A GCACGTCCCCTTCGGGGGCAGAGTGACAGGTGGCGCATGGTTGTCGTCAGCTCGTGTCGT GGACGTCCCCTTCGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGT GGACGTCCCCTTCGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGT

GAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAG GAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAG

CATCATGCCCATTATGACCTGGGCTACACACGTGCTACAATGGACAGAACACAGGGCAGC CATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGACAGAACAAAGGGCAGC CATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGACAGAACAAAGGCAGC CATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGACAGAACAAAGGCAGC CATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGACAGAACAAAGGGCAGC CATCATGCCCCTTATGACCTGGGCTACACCGTGCTACAATGGACAGAACAAAGGGCAGC CATCATGCCCCTTATGACCTGGGCTACACCGTGCTACAATGGACAGAACAAAGGGCAGC CATCATGCCCCTTATGACCTGGGCTACACCGTGCTACAATGGACAGAACAAAGGCAGC

TAAACCGCGAGGTTAAGCCAATCGCACAAATCTGTTCTCAGATCGGATCGCAGTCTGCAA GAAACCGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTCTGCAA GAAACCGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTCGCAG AAACCGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTCGCAG GAAACCGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTCGCAG GAAACCGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTCGCAG GAAACCGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTCGCAG GAAACCGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTCGCAG GAAACCGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTCGCAG GAAACCGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTCGCAG GAAACCGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTCGCAG GAAACCGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTCTGCAA GAAACCGCGGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTCTGCAA GAAACCGCGGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTCTGCAA GAAACCGCGGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTCTGCAA GAAACCGCGGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTCTGCAA

F Sample4	CTTGACTGCGTGAAGCTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACA
Bacillus subtilis D221	CTCGACTGCGTGAAGCTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACG
Bacillus tequilensis NA-10	CTCGACTGCGTGAAGCTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACG
Bacillus thuringiensis Je5a1	CTCGACTGCGTGAAGCTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACG
Bacillus mojavensis ZA1	CTCGACTGCGTGAAGCTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACG
Bacillus amyloliguefaciens NSP6	CTCGACTGCGTGAAGCTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACG
Bacillus methylotrophicus Y-2	CTCGACTGCGTGAAGCTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACG
Bacillus siamensis RD MATFA 04	CTCGACTGCGTGAAGCTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACG
Bacillus vallismortis IARI-DSB17	CTCGACTGCGTGAAGCTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACG
Bacillus cereus NCIM2217	CTCGACTGCGTGAAGCTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACG
Bacillus sonorensis BGAS39I	CTCGACTGCGTGAAGCTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACG
Bacillus axarquiensis BCR30A	CTCGACTGCGTGAAGCTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACG
10. T	** ************************************
F Sample4	TTCCCGGGACTGTCCACCCCCGACAA
Bacillus subtilis D221	TTCCCGGGCCTTGTACACACCCCCCGAAAA
Bacillus tequilensis NA-10	TTCCCGGGCCTTGTACACACCCCCCG
Bacillus thuringiensis JeSa1	TTCCCGGGCCTTGTACACCCCCG
Bacillus mojavensis ZA1	TTCCCGGGCCTTGTACACACCGCCCGACA-
Bacillus amyloliquefaciens NSP6	TTCCCGGGCCTTGTACACACCGCCCGAC
Bacillus methylotrophicus Y-2	TTCCCGGGCCTTGTACACACCGCCCG
Bacillus siamensis RD MATFA 04	TTCCCGGGCCTTGTACACACCGCCCG
Bacillus vallismortis IARI-DSB17	TTCCCGGGCCTTGTACACACCGCCCG
Bacillus cereus NCIM2217	TTCCCGGGCCTTGTACACACCGCCCG
Bacillus sonorensis BGAS39I	TTCCCGGGCCTTGTACACACCGCCCG
Bacillus_axarquiensis_BCR30A	TTCCCGGGCCTTGTACACACCGCCCG

Figure 3: Partial sequence alignment for the PCR products of the 16S rRNA genes of a bacterial isolates isolated from salted fish (isolate 4) and eleven other high-similarity sequences published in the NCBI-GenBank database.

F_Sample3 Bacillus_firmus_PX28 Bacillus_oceanisediminis_A3a Bacillus_subtilis_HAU5

F_Sample3 Bacillus_firmus_PX28 Bacillus_oceanisediminis_A3a Bacillus_subtilis_HAU5 GTGCAGGGACACCCGTGGCGAAGGGGACTCTTTGGTCTGTAACTCACGCTTAGGCGCGCAA GTGGAGGAACACCAGTGGCGAAGGCGACTCTTTGGTCTGTAACTGACGCTGAGGCGCGCAA GTGGAGGAACACCAGTGGCGAAGGCGACTCTTTGGTCTGTAACTGACGCTGAGGCGCGCAA GTGGAGGAACACCAGTGGCGAAGGCGACTCTTTGGTCTGTAACTGACGCTGAGGCGCGCAA

AAATT-GTGGAGCACACACGATTTGATACCCTGGTTTTGCACGCCGTAAAAGATGAGTGT AGCGTGGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGC AGCGT-GGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGC AGCGT-GGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGC

TAAGTGTTACAGGGTTTCCGCCCCTTAGTGCTGCAGCTAACGCATTTAGCACTCCGCCTG TAAGTGTTAGAGGGTTTCCGCCCCTTTAGTGCTGCAGCAAACGCATTAAGCACTCCGCCTG TAAGTGTTAGAGGGTTTCCGCCCTTTAGTGCTGCAGCAAACGCATTAAGCACTCCGCCTG TAAGTGTTAGAGGGTTTCCGCCCTTTAGTGCTGCAGCAAACGCATTAAGCACTCCGCCTG

TGGAGTATAGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGGGCGCACAAGCGGTGG GGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGG GGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGG GGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGG

AACCCTAGAGATAGGGGGTTTCCCTTCGGGGGACAGGATGACAGGTGGTGCATGGTTGTC AACCCTAGAGATAGGGCGTTCCCCTTCGGGGGACAGGATGACAGGTGGTGCATGGTTGTC AACCCTAGAGATAGGGCGTTCCCCTTCGGGGGACAGGATGACAGGTGGTGCATGGTTGTC AACCCTAGAGATAGGGCGTTCCCCTTCGGGGGACAGGATGACAGGTGGTGCATGGTTGTC

GTTGCCAGCATTCAGTTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTG GTTGCCAGCATTCAGTTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTG GTTGCCAGCATTCAGTTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTG GTTGCCAGCATTCAGTTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTG

GGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGAT GGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGAT GGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGAT GGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGAT

GGAACAAAGGGCTGCGAGACCGCGAGGTTAAGCGAATCCCATAAATCCGTTCTCAGTTCG GGTACAAAGGGCTGCAAGACCGCGAGGTTAAGCGAATCCCATAAAACCATTCTCAGTTCG GGTACAAAGGGCTGCGAGACCGCGAGGTTAAGCGAATCCCATAAAACCATTCTCAGTTCG GGTACAAAGGGCTGCGAGACCGCGAGGTTAAGCGAATCCCATAAAACCATTCTCAGTTCG ************

GATTCGCAGTCTGCAACTCGCCTGCATGAACGCCGGAATCGCTAGTAATCGCTGATCCAG GATT-GCAGGCTGCAACTCGCCTGCATGAA-GCCGGAATCGCTAGTAATCGCGGAT-CAG GATT-GCAGGCTGCAACTCGCCTGCATGAA-GCCGGAATCGCTAGTAATCGCGGATCCAG GATT-GCAGGCTGCAACTCGCCTGCATGAA-GCCGGAATCGCTAGTAATCGCGGAT-CAG

Figure 4 : Partial sequence alignment for the PCR products of the 16S rRNA genes of a bacterial sample isolated from salted fish (isolate 3) and high-similarity *B. oceanisediminis*, *B. firmus* and *B. subtilis* sequences published in the NCBI-GenBank database.

R_Sample7 Bacillus_safensis_SDS101 Bacillus_pumilus_p51H01	TTGGCAACACGCACCGCACAATAA-CCCGC-ATTTCTAGCCGATCCGACTTCCGCAAGCC AACGTATTCACCGCGGCATGCTGA-TCCGCGATTACTAGCGATTCCAGCTTCACGCAGTC CGGCATGCTGATCCCGCGATTACTAGCGATCCCACCTTCACGCAGTC * *** * * *** *** **** ****
R_Sample7 Bacillus_safensis_SDS101 Bacillus_pumilus_p51H01	AAATTGCGGACTGCAAACCGGACTGAG-ACAGATTTATGCCATTGGCTAAACCATTGCGG GAGTTGCAGACTGCGATCCGAACTGAGAACAGATTTATGGGATTGGCTAAACC-TTGCGG GAGTTGCAGACTGCGATCCGAACTGAGAACAGATTTATGGGATTGGCTAAACC-TTGCGG * **** ****** * *** ****** **********
R_Sample7 Bacillus_safensis_SDS101 Bacillus_pumilus_p51H01	-CTTGC-GCCCTTTGTTCTCTCCATTGTAGGCCGCGTGCTAGCCCATTACATAAGGCGCA TCTTGCAGCCCTTTGTTCTGTCCATTGTAGCACGTGG-TAGCCCAGGTCATAAGGGGCA TCTTGCAGCCCTTTGTTCTGTCCATTGTAGCACGTGTG-TAGCCCAGGTCATAAGGGGCA ***** *******************************
R_Sample7 Bacillus_safensis_SDS101 Bacillus_pumilus_p51H01	TGATGATTTGACGCCATCCCCACCTTCCTCCGGTTTGTCACCGGCAGCCACCTAAGAGTG TGATGATTTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGGCAGTCACCTTAGAGTG TGATGATTTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGGCAGTCACCTTAGAGTG
R_Sample7 Bacillus_safensis_SDS101 Bacillus_pumilus_p51H01	CCCAATTGAATGCTGGCAACAAAGACCAAGGGTTGCGCTCGTGGCGGGACTTAACCCAAC CCCAACTGAATGCTGGCAACTAAGATCAAGGGTTGCGCTCGTTGCGGGACTTAACCCAAC CCCAACTGAATGCTGGCAACTAAGATCAAGGGTTGCGCTCGTTGCGGGACTTAACCCAAC
R_Sample7 Bacillus_safensis_SDS101 Bacillus_pumilus_p51H01	ATCTCACGACACGAGCTGACTCCAACCATGCACCACCTGTCACTCGGTCCCCGGAGGTAA ATCTCACGACACGA
R_Sample7 Bacillus_safensis_SDS101 Bacillus_pumilus_p51H01	ACCCCTATCTCTAGGGAAGTTAGAGGTTGTCAAGCCCTGGG-AGGGTTCTCCTTGGTTGT AGCCCTATCTCTAGGGTTGTCAGAGGATGTCAAGACCTGGTAAGGGTTCTTCGC-GTTGC AGCCCTATCTCTAGGGTTGTCAGAGGATGTCAAGACCTGGT-AAGGTTCTTCGA-GTTGC * ************** ** ***** ****** ***** *
R_Sample7 Bacillus_safensis_SDS101 Bacillus_pumilus_p51H01	TTCGAATTAAACCACGTGTTCCCCCCCTTTG-GCGACCCCCGGTAAATAACTGTGGGTT TTCGAATTAAACCACATGCTCCCCCGCTTGTGCGGGCCCCC-GTCAATTCCTTTGAGTT TTCGAATTAAACCACATGCT-CCACCGCTTGTGCGGGCCCCC-GTCAATTCCTTTGAGTT
R_Sample7 Bacillus_safensis_SDS101 Bacillus_pumilus_p51H01	TTTGTCCTTGAGACCTAAATCCCCAAGGCGCATTATTTAATGGGTTA-CACCGGCCCCAA TCAGT-CTTGCGACCGTACTCCCC-AGGCGGAGTGCTTAATGCGTTAGCTGCAGCACTAA TCAGT-CTTGCGACCGTACTCCCC-AGGCGGAGTGCTTAATGCGTTAGCTGCAGCACTAA * ** **** **** * ***** * ***** * * *****
R_Sample7 Bacillus_safensis_SDS101 Bacillus_pumilus_p51H01	AGGGGGCGAAAACCCGGTCTGGCTTATCCCCCAGTGTTTTCCGAATTCGACAAATTGGTT GGGGCGGAAACCCCCTAACACTTAGCACTCATCGTTTACGGCGTGGACTACCAGGG GGGGCGGAAACCCCCTAACACTTAGCACTCATCGTTTACGGCGTGGACTACCAGGG ****** ****** * *** *** *** *** * * *
R_Sample7 Bacillus_safensis_SDS101 Bacillus_pumilus_p51H01	TTTCTAATTTGGTGGGGGCCCCCAA TATCTAATCCTGTTCGCTCCCCACGCTT TATCTAATCCTGTTCGCTCCCCACGCTT * ****** ** * ****

Figure 5: Partial sequence alignment for the PCR products of the 16S rRNA genes of a bacterial sample isolated from salted fish (isolate 7) and high-similarity *B. pumilus* and *B. safensis* sequences published in the NCBI-GenBank database

CCCCTGCGACACTAATACTGACGCTCAG-CACGAAAGCGTGGGGGAGCCAACAGGATTAGA F_Sample5 CCCCTGGGA---TAATACTGACGCTCAGACACGAAAGCGTGGGGAGCAAACAGGATTAGA Rhodobacter_sphaeroides_L Pusillimonas_sp CCCCTGGGA---TAATACTGACGCTCAGACACGAAAGCGTGGGGGGGGAGCAAACAGGATTAGA Alcaligenes faecalis EGU38 -CCCTGGGA---TAATACTGACGCTCAGACACGAAAGCGTGGGGAGCAAACAGGATTAGA TACCCTGGTAGTCCACGCCCTAAACGATGTCAACTAGCTGTTGGGGCCGTTCCGCCCTTT F Sample5 Rhodobacter_sphaeroides_L TACCCTGGTAGTCCACGCCCTAAACGATGTCAACTAGCTGTTGGGGCCGTT-AGGCCTTA Pusillimonas_sp TACCCTGGTAGTCCACGCCCTAAACGATGTCAACTAGCTGTTGGGGCCGTT-AGGCCTTA Alcaligenes_faecalis_EGU38 TACCCTGGTAGTCCACGCCCTAAACGATGTCAACTAGCTGTTGGGGCCGTT-AGGCCTTA F_Sample5 GTAGCGCCGCTAACGCCCAAAGTTGACCGCCCGGGGAGGACGGTCGCCAGATTAAAACTC Rhodobacter_sphaeroides_L GTAGCGCAGCTAACGCGTGAAGTTGACCGCCTGGGGAGTACGGTCGCAAGATTAAAACTC Pusillimonas sp GTAGCGCAGCTAACGCGTGAAGTTGACCGCCTGGGGAGTACGGTCGCAAGATTAAAACTC Alcaligenes_faecalis_EGU38 GTAGCGCAGCTAACGCGTGAAGTTGACCGCCTGGGGAGTACGGTCGCAAGATTAAAACTC F Sample5 CCAAGAATTTGCCGGGACCCGCCCCAGCGGAGGATGATGTGGTATTAATTTGATACCACG Rhodobacter_sphaeroides_L AAAGGAATTGACGGGGACCCGCACAAGCGGTGGATGATGTGG-ATTAATTCGATGCAACG Pusillimonas_sp AAAGGAATTGACGGGGACCCGCACAAGCGGTGGATGATGTGG-ATTAATTCGATGCAACG Alcaligenes faecalis EGU38 AAAGGAATTGACGGGGACCCGCACAAGCGGTGGATGATGTGG-ATTAATTCGATGCAACG F Sample5 CGAAAAACCTTACCCACCCTTGACATCTCTAAAAAACCCAAAGAAATTTGGCCCTGCCCTC Rhodobacter_sphaeroides_L CGAAAAACCTTACCTACCCTTGACATGTCTGGAAAGCCGAAGAGATTTGGCCGTGCTCGC Pusillimonas_sp CGAAAAACCTTACCTACCCTTGACATGTCTGGAAAGCCGAAGAGATTTGGCCGTGCTCGC Alcaligenes_faecalis_EGU38 CGAAAAACCTTACCTACCCTTGACATGTCTGGAAAGCCGAAGAGATTTGGCCGTGCTCGC ******** *** *** ** F Sample5 AAGAAAACCGGAACCCAGGTGCTGCATGGCTGTCGCCAGCTCGTGTCGGGAGATGTTGGG Rhodobacter_sphaeroides_L AAGAGAACCGGAACACAGGTGCTGCATGGCTGTCGTCAGCTCGTGAGATGTTGGG Pusillimonas_sp AAGAGAACCGGAACACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTGGGAGATGTTGGG Alcaligenes_faecalis_EGU38 AAGAGAACCGGAACACAGGTGCTGCATGGCTGTCGTCGTCGTGTCGTGAGATGTTGGG F Sample5 TTAAGTCCCGCAACGAGCGCAACCCTTGTCATTAGTTGCTACGAAAGAGCACTCTAATGA Rhodobacter_sphaeroides_L TTAAGTCCCGCAACGAGCGCAACCCTTGTCATTAGTTGCTACGCAAGAGCACTCTAATGA Pusillimonas_sp TTAAGTCCCGCAACGAGCGCAACCCTTGTCATTAGTTGCTACGCAAGAGCACTCTAATGA Alcaligenes faecalis EGU38 TTAAGTCCCGCAACGAGCGCAACCCTTGTCATTAGTTGCTACGCAAGAGCACTCTAATGA F Sample5 TACTGCCGGTGACAAACCGAATCAAGGTGGAGTTGACGTCAAGTCCTCATGGCCCTTATG Rhodobacter_sphaeroides_L GACTGCCGGTGACAAACCGGAGGAAGGTGGGGGATGACGTCAAGTCCTCATGGCCCTTATG Pusillimonas sp GACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAGTCCTCATGGCCCTTATG Alcaligenes_faecalis_EGU38 GACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAGTCCTCATGGCCCTTATG F Sample5 GTTAGGGCTTCACACGTCATACAATGGTCGGGACAGAGGGTCGCCAACCCGCAAGGGGGA Rhodobacter_sphaeroides_L GGTAGGGCTTCACACGTCATACAATGGTCGGGACAGAGGGTCGCCAACCCGCGAGGGGGA Pusillimonas_sp GGTAGGGCTTCACACGTCATACAATGGTCGGGACAGAGGGTCGCCAACCCGCGAGGGGGA Alcaligenes_faecalis_EGU38 GGTAGGGCTTCACACGTCATACAATGGTCGGGACAGAGGGTCGCCAACCCGCGAGGGGGA F Sample5 GCCAATCTCAGAAACCCGATCGTAGTCCGGATCGCAGTCTGCAACTCGACTGCGTGAAGT Rhodobacter_sphaeroides_L GCCAATCTCAGAAACCCGATCGTAGTCCGGATCGCAGTCTGCAACTCGACTGCGTGAAGT Pusillimonas sp GCCAATCTCAGAAACCCGATCGTAGTCCGGATCGCAGTCTGCAACTCGACTGCGTGAAGT Alcaligenes_faecalis_EGU38 GCCAATCTCAGAAACCCGATCGTAGTCCGGATCGCAGTCTGCAACTCGACTGCGTGAAGT F Sample5 CGGAATCGCTAGTAATCGCGGATCAGAATGTCGCGGTGAATACGTTCCCGGTTCTGTCGC Rhodobacter_sphaeroides_L CGGAATCGCTAGTAATCGCGGATCAGAATGTCGCGGTGAATACGTTCCCGGGTCTTGTAC Pusillimonas_sp CGGAATCGCTAGTAATCGCGGATCAGAATGTCGCGGTGAATACGTTCCCGGGTCTTGTAC Alcaligenes faecalis EGU38 CGGAATCGCTAGTAATCGCGGATCAGAATGTCGCGGTGAATACGTTCCCGGGTCTTGTAC

Figure 6: Partial sequence alignment for the PCR products of the 16S rRNA genes of a bacterial sample isolated from salted fish (isolate 5) and high-similarity *Pusillimonas, Rhodobacter sphaeroides* and *Alcaligenes faecalis* sequences published in the NCBI-GenBank database.

DISCUSSION

Much attention has been given to halophilic bacteria, especially moderately halophilic bacteria. These bacteria have been isolated from salted fish, brine wells, salt lakes, salterns and salt mines (Bardavidet al. 2007, Chen et al. 2007, Xiang et al. 2008, Swan et al. 2010 and Hezavenet al., 2010). Several studies have been carried out on the biotechnological applications of halophilic bacteria, including the production of bioactive compounds (antibiotics), and studies have also investigated their phylogenetic characteristics (Vreeland 1992, Ventosa et al., 1998 and Vahed et al., 2011). Based on morphological and biochemical tests and 16S rRNA gene sequencing, we identified eight bacterial strains isolated from salted fish. The chemical analysis of the salted fish samples showed that the fresh weight, dry weight organic matter content, TSS, TS, elements related to salinity (Na, Ca and Mg) and pH results are in agreement with Youssef et al. (2003). The growth curve data showed that the bacterial strains isolated from saline media had a similar acceleration action when grown on NA media and nutrient broth media with NaCl, and NaCl had no effect on the velocity of phase, which is consistent with Omotovinbo (2016).

Halophiles grow optimally at different salinity concentrations, which can be divided into three classes: low salinities of 20-50 ppt, moderate salinities of 50-200 ppt and high salinities > 200 pptNaCl (DasSarma and DasSarma, 2006). Salinity-tolerant bacterial isolates have attracted the attention of agriculturists as soil inoculums to improve plant growth and yield in saline soils. The widespread use of halotolerant bacteria is of great interest for future research and biotechnological development (DasSarma and DasSarma, 2006).

Phylogenetic analysis based on 16S rDNA sequencing indicated that three isolates (No. 1, 2 and 8) were members of the genera Cronobacter and closely related to the species C. condimenti, C. malonaticus, C. sakazakii BQ16, C. sakazakii Jor1468, C. dublinensis and C. muytjensii. Isolate No. 3 was most closely related to Bacillus oceanisediminisA3a, Bacillus firmus PX28 and Bacillus subtilis HAU5, Furthermore, isolate No. 4 was closely related to Bacillus mojavensis ZA1 and then to several species of Bacillus. Isolate was closely related to No. 7 Bacillus pumilusp51H01 and Bacillus safensis SDS101. A previous study reported that gram-positive bacteria assigned to Bacillus were extensively represented in saline soils (Ventosa et al., 2008).

Most of these bacteria were classified as halotolerant microorganisms, which are able to grow, in most cases, in NaCl concentrations up to 25% (Kushner, 1985)

Isolate No. 5 was clustered with three different genera: *Alcaligenes faecalis, Rhodobacter sphaeroides* and *Pusillimonas_sp.* Isolate No. 6 was separated alone in the last cluster. Further studies are required to identify these isolates, which are potential type strains for novel species.

CONCLUSION

The results of this work showed that some Salinity-tolerant bacterial isolates have been isolated and identified by morphological, biochemical and molecular properties. Also, this study suggested that Salinity-tolerant bacterial isolates will be used to have attracted the attention of agriculturists as bacterial fertilizers can improve plant growth and yield in saline soils.

CONFLICT OF INTEREST

The authors declared that present study was performed in absence of any conflict of interest.

ACKNOWLEGEMENT

The authors are thankful to Eng./ Mahmoud victor, technical microbiology lab. - Faculty of Agriculture ,South Valley University , for contribute of bacterial strain isolation and a great thankfulness to prof. Dr/ Hamdy M. Elaref, Genetic Department, Assiut university , for contribute of performed the data analysis and manuscript revision.

AUTHOR CONTRIBUTIONS

This work was carried out in collaboration between all authors. Authors MA-E, RK and KAA performed the conception of the manuscript, designed the study. MA-E and RK designed and performed the experiments and also wrote the manuscript .Authors MA-E, RK and KAA performed the data analysis and interpretation of the manuscript. Authors MA-E and RK complete the drafting of the manuscript. Authors MA-E, KAA and RK completed critical revision of the manuscript for important intellectual content. All authors read and approved the final version.

Copyrights: © 2019@ author (s).

This is an open access article distributed under the terms of the **Creative Commons Attribution License** (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are

credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

REFERENCES

- Bailey, JE., Ollis, DF., 1986. Biochemical Engineering Fundamentals, 2nd Ed., Chapter 3, McGraw-Hill, New York
- Bardavid, RE., Ionescu D., Oren A., Rainey FA., Hollen BJ., Bagaley DR., Small AM., McKay C., 2007. Selective enrichment, isolation and molecular detection of *Salinibacter* and related extremely *halophilic Bacteria* from hypersaline environments. Hydrobiologia; 576:3–13
- Chen YG., Cui XL., Pukall R., Li HM., Yang YL., Xu LH., Wen ML., Peng Q., Jiang CL., 2007. *Salinicoccuskunmingensis* sp. nov., a moderately halophilic bacterium isolated from a salt mine in Yunnan, south-west China. Int J SystEvolMicrobiol; 57:2327-2332.
- Cowan, ST., Steel, KJ., 1960. A device for the identification of microorganisms. Lancet, 275(7135):1172-1173.
- DasSarma, S., DasSarma P., 2006. Halophiles. Encyclopedia of Life Sciences, Wiley, London.
- Facklam R., Elliott JA., 1995. Identification, classification, and clinical relevance of catalase-negative, gram-positive cocci ,excluding the *streptococci* and *enterococci*. Clin. Microbiol. Rev., 8(4):479.
- Hezayen, FF., Younis MAM., Hagaggi NSA., Shabeb MSA., 2010. *Oceanobacillusaswanensis* strain FS10 sp. nov., an extremely halotolerant bacterium isolated from salted fish sauce in Aswan City, Egypt. Global J MolSci. ;5:1–6.
- Kovacs, N., 1956. Identification of *Pseudomonas pyocyanea* by the oxidase reaction. Nature, Lond., 178:703.
- Kushner, DJ., 1985. The Halobacteriaceae. In :Woese CR, Wolfe RS (eds) The bacteria. Academic Press, Inc. (London), 171-214.
- Lane, DJ., Pace, B., Olsen, GJ., Stahl, DA., Sogin, ML., Pace, NR., 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl AcadSci U S A.; 82(20):6955-6959.
- Mora, RR., Amann, R., 2001. The species concept for prokaryotes. FEMS Microbiol Rev 25:39-67

- Omotoyinbo, OV., Omotoyinbo BI., 2016. Effect of Varying NaCl Concentrations on the Growth Curve of Escherichia coli and Staphylococcus aureus. Cell Biology. 4(5):31-34.
- Oren, A., 2008. Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems. 4(2):13.
- Palleroni, NJ., 1984. Gram negative aerobic rods and cocci. In: Krieg, N.R., (Ed). Bergeys manual of systematic bacteriology.vol.I,II,III,Iv:140-199.
- Petti, CA., 2007. Detection and identification of microorganisms by gene amplification and sequencing. Clin. Infect. Dis. 44:1108-1114.
- Phillips, K., Zaidan, F., Elizondo, OR., Lowe, K.L., 2012. Phenotypic characterization and 16S rDNA identification of culturable non-obligate halophilic bacterial communities from a hypersaline lake, La Sal del Rey, in extreme South Texas (USA). Aquatic Biosystems, 8:1-11.
- Sauer, P., Gallo, J., Kesselova, M., Kolar, M. Koukalova, D., 2005. Universal primers for detection of common bacterial pathogens causing prosthetic joint infection. Biomed Pap Med FacUnivPalacky Olomouc Czech 149(2):285-288
- Swan, BK., Ehrhardt CJ., Reifel KM., Moreno LI., Valentine DL., 2010. Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton Sea. Appl Environ Microbiol. ;76:757–768
- Tringe, SG., Hugenholtz, P., 2008. A renaissance for the pioneering 16S rRNA gene. Curr. OpinMicrobiol.; 11(5):442-426.
- Vahed, SZ., Forouhandeh H., Hassanzadeh S., Klenk, H., Hejazi MA., Hejazi MS., 2011. Isolation and Characterization of Halophilic Bacteria from Urmia Lake in Iran. Microbiology, 80(6): 834–841.
- Ventosa, A., Nieto, JJ., Oren, A. 1998. Biology of Mod erately Halophilic Aerobic Bacteria, Microbiol. Mol. Biol. Rev., (62):504–544.
- (1992). Vreeland, RH., The family Halomonadaceae. The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. 2nd ed. Balows, A., Trüper, H.G., Dworkin, M., Hard er, W. and Schleifer, K.H. Eds. New York: Springer Verlag, (6):3181-3188.
- Wilson, K., 1987. Preparation of genomic DNA from bacteria. InCurrent Protocols in

Molecular Biology, 241-245.

- Xiang W., Guo J., Feng W., Huang M., Chen H., Zhao J., Zhang J., Yang Z., Sun Q. 2008. Community of extremely halophilic bacteria in historic Dagong Brine Well in southwestern China. World J MicrobiolBiotechnol.;24:2297–2305.
- Yang, B., Wang, Y., Qian, P., 2016. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics ; 17(135):1-8.
- Youssef, MS., Abo-Dahab, NF., Farghaly, RM., 2003. Studies on Mycological Status of Salted Fish "Moloha" in Upper Egypt, Mycobiology, 31(3):166-172.