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The experiment was managed for four mash bean [Vigna mungo (L.) Hepper] genotypes to evaluate the 
spermidine efficacy index for determination of its dose response curves accompanied with emphasize on 
genotypic variations by their response. Spermidine concentrations of 0.25, 0.50, 0.75, 1.00, 1.25 and 
1.50 mM were tested for leaf water potential, osmotic potential, chlorophyll a, chlorophyll b and total 
carotenoids contents of MASH 80, MASH 88, MASH 97 and MASH ES-1. Seeds were grown in pots 
which were replicated four times for each concentration of spermidine in every genotype and were sit in 
completely randomized fashion. Plants were sprayed thrice with the said concentrations of spermidine 
starting from twenty days after germination with an interval of ten days each. Data were collected for 
pigments concentration and water relations attribute on expiry of ten days after completion of spermidine 
spray. The action of exogenous spermidine was significantly effective in stimulating photosynthetic 
pigments and water relation attributes. The lowest significant effective dose for each studied 
characteristic varied. MASH ES-1 and MASH 97 for chlorophyll a concentration while MASH 88 and 
MASH ES-1 for water potential exhibited linear expression model. All other measurements revealed a 
sigmoidal dose response curves. Genotype MASH ES-1 responded at the most in term of pigments 
concentration and water potential while MASH 80 responded to the least extent regarding most of the 
characteristics. 
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INTRODUCTION 

Plant growth regulators has been widely 
applied on plants under in-vitro to in-vivo 
practices. The correct growth activators directly 
interfere with plant’s hormonal system. Such bio-
agents are symbolized as plant growth activators, 
which may be inhibited or blocked by specific 
inhibitors of its own biosynthesis and its receptor. 
Typically, the growth regulator displays their 
phytotoxic affects in the local to transient ways 

when applied externally (Wilhelm 2015). 
A controversy remained among the views 

about plant growth regulator nature of polyamines. 
The concentration of polyamines in cell versus to 
its effective dose does not include these 
compounds among the plant growth regulator’s 
list (Evans and Malmberg 1989;Galston and Kaur-
Sawhney 1995). Many researchers reported the 
polyamines (polyamines) including the spermidine 
(SPD), spermine (SPM), and their obligate 
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precursor putrescine (PUT) them among the 
growth regulators of plants (Galston and Kaur-
Sawhney 1990; Tiburcio et al.1993; Scoccianti et 
al. 2000 and Tassoni et al. 2000). Very little 
information is available about the polyamine’s 
mode of action (Walden et al. 1997), while a 
variety of physiological processes are modulated 
ranging from cell multiplication and or its 
differentiation under plant stressed conditions 
positively. During the last few years, interest to 
use polyamine has been increasing tremendously 
due to its magical effects in plants growth and 
now they are especially used to improve the plant 
developmental processes in many important food 
crops (Chi et al.1994; Bajaj and Rajam 1996; 
Rajam 1997; Urszula 2014). They are synthesized 
in plants during stress conditions and help in 
various plant developmental processes 
(Benavides 1997; Dayadevi  et al. 1994; Nag et al. 
2001). 

Polyamines can regulate water potential of 
plant by regulating stomatal opening (Galston and 
Sawhney 1990). The spermidine have role in 
regulation of stomatal movements, in general this 
function could also be represented common by 
other polyamines. For stomatal regulation, 
changes in turgor pressure in guard cell are 
regulated by many ionic channels and pumps 
(Ward et al. 1995). Interaction of polyamines with 
Ca2+ channels (Williams 1997) leads to ionic 
balance maintenance in control of water balance 
for regulation of growth and developmental 
processes (Aziz et al. 1999). Also the polyamines 
have been reported to promote osmotic 
adjustment, which helps plant to maintain turgor 
under stress conditions (Islam et al. 2003).  

Chlorophyll concentration determines the 
extent of important biological phenomenon of 
photosynthesis which ultimately has a direct 
relation with plant growth and development. 
Chlorophylls are important plant pigments for 
plant primary productivity regulated through 
photosynthesis. Polyamines are possibly involved 
in the increased rate of photosynthesis through 
higher growth rates and high leaf chlorophyll 
content (Borrell et al. 1997). Besides chlorophylls, 
carotenoids including other coloring pigments 
responsible for the bright colors of various fruits 
and vegetables are synthesized. Polyamines 
application has an increasing effect on the level of 
carotenoids (Nassar et al. 2003). 

There are many reported facts which account 
for variation in dose response of polyamines. 
Sensitivity of plant to polyamine varies depending 
upon many aspects. Like as various cell 

especially located at apexes are differentially 
sensitive from the applied concentrations of 
polyamines. Such raising or lowering the 
polyamine’s concentrations may diversly affect the 
relative cell division as well as cell differentiation 
rates in different groups of cells or even may alter 
morphogenetic expression patterns (Bernier et al. 
1993). Dual action of polyamine as regulator of 
cell death (apoptosis) and cell growth leaves an 
ambiguity for dose specificity (Schipper et al. 
2000). Under extreme conditions, application in 
high concentrations of exogenous polyamine can 
causes cell death (Brunton et al. 1991). Whenever 
to conduct an experiment, it is very essential to 
pin out the optimal dose of polyamines. For that 
dose response curve is required to construct with 
hormonal concentration and degree of response 
of group of cells. Evaluation of water relations of 
plants for its screening against a particular 
external factor, are considered to be a satisfactory 
criteria (Schonfeld et al. 1988) to find out the 
threshold level of factor reducing 10% growth of 
plant (Edwards and Asher 1982). However, the 
results of most of such type of studies do not 
agree with each other. The reasons behind this 
are the experimental differences, climatic 
conditions, soil type, variation in nature and life 
cycle of crops, genotypic differences etc. 

Black gram [Vignamungo (L.)Hepper], a self-
pollinated grain legume crop is cultivated as one 
among the most important pulse crops widely 
(Nag et al., 2006). It’s very cheap protein source 
one human for the distant areas with economic 
value. Based on bio-chemical analysis, seeds of 
mash bean contain 1-2% fats, 2.1% oil, 20-24% 
protein, carbohydrates and traces of vitamin A 
and B (James 1981). By considering the 
importance of mash bean [Vignamungo 
(L.)Hepper] and the variation in spermidine dose 
responses; the present study was designed to find 
out dose response curves for various exogenously 
applied spermidine concentrations. 
 
MATERIALS AND METHODS 

Plant growth regulator mediated regulation of 
plant development is dependent upon variation in 
cell sensitivities and its response times. Whenever 
an experiment is conducted on hormonal 
applications there a dose response curve must be 
constructed by keeping differential hormonal 
concentration against degree of plant growth 
responses. Hence, an experiment was devised to 
find out spermidine efficacy for chlorophyll a, 
chlorophyll b, carotenoids contents, leaf water 
potential and leaf osmotic potential of four 
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[Vignamungo(L.)Hepper] genotypes to evaluate 
the expression of various dose response curves 
for exogenous spermidine 

2.1 Materials  
Seeds of four mash genotypes i-e MASH 80, 

MASH 88, MASH 97 and MASH ES-1 were used 
in the experiment. The seed of these genotypes 
were obtained from Ayub Agricultural Research 
Institute (AARI), Faisalabad (Pakistan). The origin 
of these genotypes are Ayub Agricultural 
Research Institute (AARI), Faisalabad (Pakistan) 
and National Agricultural Research Centre 
(NARC),Islamabad (Pakistan). Spermidine, N-[3-
Aminopropyl]-1,4-butanediamine,(C7H19N3) of 
Sigma Aldrich, Japan was used as plant growth 
regulators. 

2.2 Methods and layout plan 
Experiment was designed with complete 

randomization of treatments and genotypes to 
avoid unequal exposure of environmental factors. 
Each dose was repeated 4-times in pots 
experiment. For the conduction of experiment, 
pots of 30 cm diameter were used. Each earthern-
pot filled with 10 kg soil (sandy loam) which were 
lined with polyethylene bags ensuring seepage 
prevention. Pots were arranged in completely 
randomized design. Sterilized seeds, with similar 
morphology (size &weight) of selected genotype 
cultivated and germinated. Weeds were uprooted 
from time to time by hand weeding and hoeing in 
order to avoid weed crop competition. Thinning 
was performed to maintain one seedling in each 
pot in order to avoid the imbalanced uptake of 
nutrients by plants. Insects and pests were control 
by foliar spray of Thiodon insecticides of Hoechst 
(Pvt) Ltd, Pakistan. After reviewing the published 
data, 0.25, 0.50, 0.75, 1.00, 1.25 and 1.50 mM 
concentration of spermidine were selected in 
addition to control conditions of distilled water 
spray. Solutions of spermidine in respective 
concentrations were prepared in estimated (pre 
determined by trial method) amount of water by 
taking the great care of their half life. Plants were 
exposed to first spray of PGRs after twenty days 
of germination repeated twice after each fifteen 
days with a great care of avoiding falling of drops 
of solution from leaf surface. The tween-20 used 
as surfactant with 0.1 concentration for foliar 
spray. 

2.3 Data recordings 
Chlorophyll (a,b),and Total Carotenoids 

Contents (mg g-1 leaf F. wt) 
Pigments contents, after ten days of last 

spray, were measured by applying procedure and 
formula reported by Arnon (1949). Fresh leaves 

were extracted with acetone (80%). The OD was 
taken at 645nm and 663nm for chlorophyll a,b and 
at 480nm for carotenoids on spectrophotometer 
(Hitachi Model-U 2001,Japan). Chlorophyll 
contents were calculated according to the 
Lichtenthaler (1987) formulae and carotenoids 
contents were calculated after Davis, (1976). 

Chl a(mg g-1)=[12.7(OD663)-2.69(OD645)]× 
V/1000×W. 

Chl b(mg g-1)=[22.9(OD645)-4.68(OD663)]× 
V/1000×W. 

Carotenoids(mg g-1)=[Acar/EM] × 1000.  
Where 
Acar=OD480+0.114(OD663)-0.638(OD645); 

EM(100%)=2500; OD=Optical density; V=Volume 
of sample; W=Weight of sample. 

Leaf water potential [w; -MPa] 
Fully expanded youngest leaf was utilized for 

predawn leaf water potential (Ψw) measurements 
using a pressure chamber (ARIMAD 2-Japan) 
after ten days of spermidine spray. Water 

potential w was measured at noon from 

11:00am to 01:00pm (Fischer et al. 1977) as w 
remains stable at this time period.  

Osmotic potential of Leaf [s; -MPa] 
Fresh leaf was folded in aluminum foil and 

frozen @ -20oC. After 7-days, it was thawed. The 
cell sap was extracted by using disposable 
syringe. This extracted cell sap was subjected for 
the measurement of leaf osmotic potential with 
osmometer (Wescor, 5500).  

2.4 Statistical analysis 
The data collected were analyzed for ANOVA 

(analysis of variance) for data of all selected 
parameters with COSTAT computer based 
package (CoHort Software,Berkeley,CA). To 
compare means, Duncan's New Multiple Range 
(DNMR) test @ 5% level of probability was used 
(Duncan 1955). Significant F values were tested 
by LSD tests at 0.05% significance level, by using 
MSTAT-C Computer Statistical Programme 
(MSTAT Development Team, 1989) 
 
RESULTS 

Chlorophyll a contents (mg g-1 leaf F. wt) 
Statistical analysis of Duncan’s Multiple 

Range test (Table: 1) depicts that increasing 
concentration of spermidine appeared to be 
responsible for gradual increase in chlorophyll a 
contents the significant being by the effects of 
1.00 to 1.50mM concentrations. Although not 
statistically justified, but to a considerable extent, 
the variations in chlorophyll contents were dose 
dependent in various genotypes. Of the four 



Yasin et al.,                                                  Effect of spermidine on Mash bean [Vigna mungo L. Hepper] 

 

Bioscience Research, 2020 volume 17(2): 1027-1040                                             1030 

 

genotypes, three revealed sigmoidal pattern and 
others one revealed linear pattern for spermidine 
effects. Maximum effect in MASH 80 and MASH 
88 was by 1.25mM but in MASH 97 and MASH 
ES-1 same was by 1.50mM concentration. 
However, the observations were excluded 
irregularly from the on going trends by the 
application of some lower concentrations thereby 
decreasing chlorophyll a contents than control 
plants (Figure 1). Among the genotypes, MASH 
88 revealed maximum (1.0103) and MASH ES-1 
revealed minimum (1.002) and all the genotypes 
differed to statistically non significant extent. 

Chlorophyll b contents (mg g-1 leaf F. wt) 
Statistical approach by Duncan’s Multiple 

Range test (Table: 2) shows that an exponential 
relationship occurred between chlorophyll b 

contents and applied spermidine. Spermidine 
established a statistically marked degree of 
induction for chlorophyll b increase at all levels of 
its concentrations except 0.50mM. As implies the 
mean performance data, maximum increase in 
chlorophyll b contents (50.000%) was by 1.00 mM 
and 1.25 while the highest level of spermidine 
concentration was less effective than this level 
revealing a sigmoidal curve for spermidine action 
(Figure 2). Maximum effect on MASH 80 and 
MASH 97 was by 1.00 mM while on MASH 88 and 
MASH ES-1 was by 1.25mM. All the genotypes 
differed statistically to a non-significant extent. 
The genotype, MASH 88 revealed maximum 
(0.078) and MASH 80 revealed minimum (0.070) 
values. 

 

 
 

Table 1: Chlorophyll a Contents (mg g-1 leaf F. wt) of 50 days old mash [Vignamungo(L.) Hepper] 
exposed to three shoot system sprays of spermidine concentrations (0, 0.25, 0.50, 0.75, 1.00, 1.25 

and 1.50 mM) at 20 to 40 days of age 
 

Spermidine 
(mM) 

MASH 80 MASH 88 MASH 97 MASH ES-1 TREATMENTS MEANS  
 (LSD=0.037 ;n=16) (n=4) 

Distilled water 0.972±0.051 0.997±0.040 0.976±0.031 0.949±0.054 0.973b±0.044 

0.25 
0.985±0.077 

(1.319) 
0.962±0.087 

(-3.510) 
0.969±0.080 

(-0.717) 
0.970±0.080 

(2.212) 
0.971b±0.073 

(-0.205) 

0.50 
1.004±0.050 

(3.292) 
1.011±0.062 

(1.404) 
0.993±0.049 

(2.236) 
0.991±0.046 

(4.425) 
1.000ab±0.047 

(2.774) 

0.75 
0.995±0.063 

(2.366) 
1.014±0.017 

(1.705) 
1.023±0.031 

(4.815) 
1.005±0.025 

(5.900) 
1.009ab±0.036 

(3.699) 

0.100 
1.012±0.027 

(4.115) 
1.015±0.032 

(1.805) 
1.013±0.025 

(3.790) 
1.020±0.020 

(7.480) 
1.015a±0.024 

(4.316) 

1.25 
1.048±0.066 

(7.818) 
1.057±0.067 

(6.018) 
1.002±0.065 

(2.663) 
1.039±0.069 

(9.483) 
1.039a±0.062 

(6.783) 

1.50 
 

1.040±0.040 
(6.995) 

1.033±0.038 
(3.610) 

1.033±0.038 
(5.840) 

1.040±0.041 
(9.589) 

1.036a±0.035 
(6.478) 

GENOTYPES 
MEANS  → 

1.008±0.056 
1.013±0.055 

(-0.490) 
1.003±0.049 

(0.496) 
1.002±0.056 

(0.545) 1.006±0.053 

(LSD=0.028 ; n=28) 

[Values represent means ± SE].Values in parentheses represent % age increase (+)/decrease (-) over 
untreated of row#1 or over MASH 80 for genotypes means.  Values followed by dissimilar letters, are 

different at P = 0.05 among means of treatments. 
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Figure 1: chlorophyll a contents (mg g-1 leaf f. Wt) of 50 days old mash [Vignamungo(L.) Hepper] 

exposed to three shoot system sprays of spermidine at 20 to 40 days of age 

 
Figure 2: chlorophyll b contents (mg g-1 leaf f. Wt) of 50 days old mash [Vignamungo(L.) Hepper] 

exposed to three shoot system sprays of spermidine at 20 to 40 days of age 
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Table 2: Chlorophyll b Contents (mg g-1 leaf F. wt) of 50 days old mash [Vignamungo(L.) Hepper] 
exposed to three shoot system sprays of spermidine concentrations (0, 0.25, 0.50, 0.75, 1.00, 1.25 

and 1.50 mM) at 20 to 40 days of age 
 

Spermidine 
(mM) 

MASH 80 MASH 88 MASH 97 MASH ES-1 TREATMENTS MEANS  
 (LSD=0.009 ;n=16) (n=4) 

Distilled water 0.063±0.015 0.056±0.016 0.061±0.003 0.062±0.010 0.060c±0.011 

0.25 
0.070±0.018 

(11.111) 
0.073±0.024 

(30.357) 
0.072±0.013 

(18.032) 
0.068±0.021 

(9.677) 
0.071b±0.017 

(18.335) 

0.50 
0.073±0.021 

(15.873) 
0.067±0.010 

(19.642) 
0.074±0.004 

(21.311) 
0.064±0.007 

(3.225) 
0.069bc±0.011 

(15.000) 

0.75 
0.071±0.015 

(12.698) 
0.083±0.026 

(48.218) 
0.075±0.008 

(22.950) 
0.067±0.015 

(6.200) 
0.074b±0.016 

(23.333) 

0.100 
0.087±0.006 

(38.095) 
0.089±0.001 

(58.928) 
0.099±0.011 

(62.295) 
0.087±0.005 

(40.322) 
0.090a±0.008 

(50.000) 

1.25 
0.082±0.006 

(30.158) 
0.100±0.014 

(78.571) 
0.085±0.004 

(39.344) 
0.094±0.008 

(51.612) 
0.090a±0.011 

(50.000) 

1.50 
 

0.074±0.008 
(17.460) 

0.078±0.007 
(39.285) 

0.076±0.003 
(24.590) 

0.079±0.003 
(27.419) 

0.077b±0.005 
(28.333) 

GENOTYPES 
  MEANS   

0.0748±0.014 
0.078±0.019 

(-11.428) 
0.077±0.013 

(-10.000) 
0.075±0.015 

(-7.142) 0.076±0.015 

(LSD=0.006 ; n=28) 

 
[Values represent means ± SE].Values in parentheses represent %age increase (+)/decrease (-) over 
untreated of row#1 or over MASH 80 for genotypes means.  Values followed by dissimilar letters, are 

different at P = 0.05 among means of treatments. 
 

Table 3: Total Carotenoids Contents (mg g-1 leaf F. wt) of 50 days old mash [Vignamungo(L.) 
Hepper] exposed to three shoot system sprays of spermidine concentrations (0, 0.25, 0.50, 0.75, 

1.00, 1.25 and 1.50 mM) at 20 to 40 days of age 
 

Spermidine 
(mM)  

MASH 80 MASH 88 MASH 97 MASH ES-1 TREATMENTS MEANS 
  (LSD=0.008 ;n=16) (n=4) 

Distilled water  0.050±0.010 0.050±0.012 0.049±0.001 0.050±0.011 0.050b±0.010 

0.25 0.056±0.013 
(12.000) 

0.046±0.009 
(-8.000) 

0.055±0.017 
(12.244) 

0.055±0.018 
(10.000) 

0.053 b±0.014 
(6.000) 

0.50  0.065±0.002 
(30.000) 

0.057±0.005 
(14.000) 

0.047±0.006 
(-4.081) 

0.050±0.005 
(0.000) 

0.054b±0.008 
(8.000) 

0.75  0.054±0.008 
(8.000) 

0.066±0.006 
(32.000) 

0.053±0.010 
(8.163) 

0.055±0.013 
(10.000) 

0.057ab±0.010 
(14.000) 

0.100  0.060±0.004 
(20.000) 

0.053±0.013 
(6.000) 

0.070±0.009 
(42.857) 

0.079±0.013 
(58.000) 

0.058ab±0.012 
(16.000) 

1.25  0.052±0.013 
(38.540) 

0.073±0.018 
(46.000) 

0.068±0.012 
(38.776) 

0.067±0.018 
(34.000) 

0.065a±0.016 
(30.000) 

1.50  
 

0.061±0.008 
(22.000) 

0.062±0.003 
(24.000) 

0.070±0.011 
(42.857) 

0.066±0.011 
(32.000) 

0.065a±0.009 
(30.000) 

GENOTYPES  
MEANS  → 

0.057±0.010 0.058±0.013 
(-1.750) 

0.059±0.014 
(-3.508) 

0.056±0.014 
(1.754) 

0.057±0.012 

(LSD=0.006 ; n=28) 

[Values represent means ± SE].Values in parentheses represent %age increase (+)/decrease (-) over 
untreated of row#1 or over MASH 80 for genotypes means.  Values followed by dissimilar letters, are 

different at P = 0.05 among means of treatments. 
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Table 4: Leaf water potential [w; -MPa] of 50 days old mash [Vignamungo(L.)Hepper] exposed to 
three shoot system sprays of spermidine concentrations (0, 0.25, 0.50, 0.75, 1.00, 1.25 and 1.50 
mM) at 20 to 40 days of age 

 
Spermidine 

(mM) 
MASH 80 MASH 88 MASH 97 MASH ES-1 TREATMENTS MEANS 

  (LSD=0.060 ;n=16) (n=4) 

Distilled water 0.666±0.041 0.621±0.067 0.531±0.082 0.663±0.162 0.620  d ±0.105 

0.25 
0.681±0.045 

(2.252) 
0.607±0.055 

(-2.254) 
0.582±0.032 

(9.604) 
0.725±0.082 

(9.351) 
0.649 cd ±0.078 

(4.677) 

0.50 
0.671±0.057 

(0.750) 
0.784±0.041 

(26.247) 
0.650±0.125 

(22.410) 
0.666±0.041 

(0.452) 
0.693 bc ±0.086 

(11.774) 

0.75 
0.732±0.082 

(9.909) 
0.736±0.143 

(18.518) 
0.644±0.100 

(21.280) 
0.749±0.011 

(12.971) 
0.715 b ±0.96 

(15.322) 

0.100 
1.094±0.140 

(64.260) 
0.844±0.084 

(35.909) 
0.771±0.054 

(45.197) 
0.797±0.123 

(20.211) 
0.839 a ±0.116 

(35.322) 

1.25 
0.937±0.054 

(40.690) 
0.828±0.062 

(33.333) 
0.773±0.016 

(45.574) 
0.840±0.083 

(26.696) 
0.844 a ±0.093 

(36.129) 

1.50 
 

0.898±0.075 
(34.834) 

0.970±0.057 
(56.199) 

0.772±0.102 
(45.386) 

0.866±0.045 
(30.618) 

0.876 a ±0.098 
(41.290) 

GENOTYPES 
MEANS  → 

0.790 a ±0.140 
(-2.597) 

0.770 a ±0.139 
0.675 a ±0.123 

(12.337) 
0.758 b ±0.111 

(1.558) 
0.748±0.134 

(LSD=0.045 ; n=28) 

[Values represent means ± SE].Values in parentheses represent %age increase (+)/decrease (-) over 
untreated of row#1 or over MASH 80 for genotypes means.  Values followed by dissimilar letters, are 

different at P = 0.05 among means of treatments. 
 

Table 5: Leaf osmotic potential [s; -MPa] of 50 days old mash [Vignamungo(L.)Hepper] exposed 
to three shoot system sprays of spermidine concentrations (0, 0.25, 0.50, 0.75, 1.00, 1.25 and 1.50 

mM) at 20 to 40 days of age  
 

Spermidine 
(mM) 

MASH 80 MASH 88 MASH 97 MASH ES-1 TREATMENTS MEANS  
 (LSD=0.054 ;n=16) (n=4) 

Distilled water 0.992±0.067 1.004±0.041 1.03±0.162 0.899±0.082 0.981 c ±0.102 

0.25 
0.978±0.055 

(-1.411) 
1.019±0.045 

(1.494) 
1.077±0.78 

(4.563) 
0.920±0.049 

(2.335) 
0.999 bc ±0.79 

(1.834) 

0.50 
0.98±0.015 

(-1.209) 
1.009±0.047 

(0.498) 
1.040±0.071 

(0.970) 
1.039±0.034 

(15.572) 
1.017 bc ±0.049 

(3.669) 

0.75 
0.997±0.013 

(0.504) 
1.007±0.090 

(0.298) 
1.052±0.043 

(2.135) 
0.945±0.046 

(5.116) 
1.000 bc ±0.063 

(1.936) 

0.100 
0.956±0.097 

(-3.629) 
1.076±0.072 

(7.171) 
1.095±0.42 

(6.310) 
1.097±0.030 

(22.024) 
1.056 ab ±0.084 

(7.645) 

1.25 
1.059±0.170 

(6.754) 
1.077±0.076 

(7.270) 
1.112±0.057 

(7.961) 
1.066±0.098 

(18.576) 
1.079 a ±0.099 

(9.989) 

1.50 
 

1.082±0.043 
(9.072) 

1.11±0.091 
(10.557) 

1.128±0.139 
(9.514) 

0.98±0.022 
(9.010) 

1.077 a ±0.098 
(9.785) 

GENOTYPES 
MEANS  → 

1.006 bc 
±0.085 

1.044 ab ±0.074 
(-0.037) 

1.076 a ±0.091 
(-6.958) 

0.992 c ±0.088 
(1.391) 

1.030±0.090 

[Values represent means ± SE].Values in parentheses represent %age increase (+)/decrease (-) over 
untreated of row#1 or over MASH 80 for genotypes means.  Values followed by dissimilar letters, are 

different at P = 0.05 among means of treatments. 
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Figure 3: Total carotenoids contents (mg g-1 leaf f. Wt) of 50 days old mash [Vignamungo(L.) 

Hepper] exposed to three shoot system sprays of spermidine at 20 to 40 days of age 
 

 
Figure 4: Leaf water potential of 50 days old mash [Vignamungo(L.) Hepper] exposed to three 

shoot system sprays of spermidine at 20 to 40 days of age 
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Figure 5: Leaf osmotic potential of 50 days old mash [Vignamungo(L.) Hepper] exposed to three 

shoot system sprays of spermidine at 20 to 40 days of age 

Total Carotenoids contents (mg g-1 leaf F. wt) 
According to statistical data presented in 

Table: 3, foliar spray of spermidine accelerated 
the contents of total carotenoids. Application of 
1.25mM and 1.50mM spermidine exerted 
statistically important function in induction of 
carotenoids increase. Generally, maximum 
(30.000%) increase was documented by the 
application of 1.25mM and 1.50mM spermidine 
and minimum (6.000%) by 0.25mM level. 
Saturation effect in MASH 80 and MASH 88 was 
by 1.25mM while in MASH 97 and MASH ES-1 by 
1.00 mM 1.50mM also in MASH 97.this reflects 
that in term of carotenoids contents spermidine 
have both linear and sigmoidal curves for its 
actions (Figure 3). Some exclusions also were 
randomly noted from the ongoing trend of 
carotenoids increase with escalating level of 
spermidine. All the genotypes differed to 
statistically non-significant extent. The genotypes, 
MASH 97 revealed maximum (0.059) and MASH 
ES-1 revealed minimum (0.056)  

Leaf water potential [w; -MPa] 
Exogenous spray of spermidine, exponentially 

and significantly amplified water potential (Table: 

5). An exception to this was observed when the 
plants of 0.25mM treatment failed to maintain the 
vagueness and revealed no significant induction 
of spermidine. Maximum effect was in diversified 
manner. In MASH 88 and MASH ES-1, it was by 
1.50mM. In MASH 80 by 1.00 mM and in MASH 
97 by 1.25mM concentrations revealing both 
sigmoidal as well as linear expression curves 
(Figure 4). Spermidine role deviated from the 
logical expectation of water potential rise when 
applied in concentration of 0.25mM in plants of 
MASH 88 reflecting a 2.254% reduction from 
control plants. Among the genotypes, MASH 80 
revealed maximum (0.790) and MASH 97 
revealed minimum (0.675) value. Only MASH ES-
1 differed statistically from rest of the genotypes. 

Leaf osmotic potential [s; -MPa] 
Spermidine concentrations, according to 

Duncan’s Multiple Range tests (Table: 5), 
established a significant stimulation for osmotic 
potential of plants when sprayed at concentrations 
of 1.00 to 1.50mM and this induction was 
maximum (9.989%) by 1.25mM dose and 
minimum (1.834%) by 0.25mM level. Maximum 
effect in all the genotypes was by 1.50mM but in 
MASH ES-1 was by 1.00 mM concentration. Of 
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the four genotypes, MASH ES-1 exhibited a 
sigmoidal curve of its response to spermidine in 
term of osmotic potential increment (Figure 5). 
The augmentation of increase in osmotic potential 
by spermidine could not have a pace in plants of 
MASH 88 when sprayed with lower 
concentrations. Among the genotypes, MASH 97 
revealed maximum (1.076) and MASH ES-1 
revealed minimum (0.992) value while the rest of 
the genotypes revealed intermediate response. 
 
DISCUSSION 

In this experiment, foliar application of 
spermidine increased chlorophyll contents. 
Induction of chlorophyll increase by spermidine 
might be due to prevention of the losses 
chlorophyll with thylakoid membrane stabilization. 
A positive correlation between prevention of 
chlorophyll loss and preservation of thylakoid 
membrane structure has been reported with 
polyamines and other plant growth regulators 
(Anderson and Rowan 1966; Biswal and Mohanty 
1976; Dennis et al. 1967). Chlorophyll loss and 
membrane stability are related processes during 
leaf senescence. At the time of leaf senescence, 
the increases in proteinase activity have observed 
(Martin and Thimann 1972; Peterson and Huffakar 
1975). Proteinase destabilizes the thylakoid 
membrane and process might be responsible for 
chlorophyll loss. Since both structural and 
functional integrity of chloroplast membranes are 
affected with inorganic cations (Argyroudi et al 
1977; Arntzen and Ditto 1976; Murakami et al. 
1975; Smillie et al.1976), meanwhile, the anionic 
binding sites on thylakoid membranes are already 
reported by various groups (Nakatani et al. 1978; 
Prochaska and Gross 1977). The cationic binding 
with the negatively charged loci on the 
membranes could be preserving the morphology 
of thylakoids and chlorophyll. As the polyamines 
are cationic in nature which may also synthesized 
within plant cells occasionally (Cohen and Zalik 
1978). The mechanistic regulations and 
intracellular distribution of polyamines are yet 
have unassumed role over structural and 
functional properties of chloroplasts. 

In the experiment, foliar application of 
spermidine increased carotenoids contents. An 
increase in pigments, like carotenoids, has also 
been reported earlier by exogenous application of 
plant growth regulator (Gowdu and Nayudu 1989). 
Similarly, green forage of barley and pea, when 
treated with plant growth regulators, had been 
reported to have greater contents of carotenoids 
than control (Averyna et al. 1989).  Little is known 

about the mechanisms of the enzymes involved in 
carotenoids biosynthesis (Bartley and Scolnik 
1995) in plants. However, it is known that the 
biosynthetic precursor proteins, after translational 
process, are transferred to plastids which is a site 
of carotenoids biosynthesis. The mRNA level for 
earlier steps in carotenoids biosynthesis is 
dependent on the plant developmental stage and 
signals from environmental conditions (Bartley 
and Scolnik 1995). Plant growth regulator has 
been reported to stabilize the transcription which 
might be a reason for carotenoids contents 
stability (Thomas et al. 1992).  Carotenoids 
degradation might be controlled by thylakoid 
membrane stability. Gadallah (1995) found that 
application of plant growth regulator increased the 
stability of membranes. Spermidine and spermine 
are reported to stabilize the DNA through bridging 
the major and minor DNA grooves (Matthews 
1993). On the basis of structural studies, it is 
indicated that polyamines have individual interacts 
rather than multiple DNA sites (Tabor and Tabor, 
1985). Polyamines also lead to trigger 
expressions of growth regulatory loci i.e. c-myc 
(Hampel et al. 199; Celano et al. 1992). 

The results of this experimental revealed that 
spermidine enhanced water potential of leaf. An 
improvement in leaf water potentials by PGRs has 
been published by many groups (Lefevre and 
Lutts 2000; Islam et al. 2003). Polyamine 
mediated enhanced water potential water might 
be due to increased water uptake by root owing to 
an increased surface area of root for greater water 
absorption. The exogenous polyamines 
applications on many plant species shows the 
positive plant growth promotion (Krizek et al. 
1997). They can act like to hormonal activity on 
cell division as its rate was reported to increase at 
G2-cell phase and even prior to M-phase (Bettuzzi 
et al. 1999). Polyamines enhance growth by 
increasing chlorophylls (a, b) and carotenoids 
contents and ultimately photosynthesis (Zheleva 
et al. 1994).  

Another possible mechanism for root growth 
promotion which accounts for increased water 
uptake is membrane stability. Polyamines acts as 
a bridge element among the membrane as well as 
cytoskeletal-network (Wyse and Butterfield 1988), 
and impart on membranal rigidity (Munro and 
Sauerbier 1973 and Tabor 1960). Polyamine 
regulate stomatal aperture for maintenance of 
water potential. Polyamine levels induce stomatal 
closure by modeling stomatal aperture (Galston 
and Kaur- Sawhney 1990). The regulation of 
stomatal movements by spermidine is considered 
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as the general function of almost all polyamines in 
plants. Even the changes turgor of guard cell 
turgor is controlled by various ionic channels and 
or pumps to instigate the stomatal movements 
(Raschke et al. 1988; Hedrich and Schroeder 
1989; Ward et al. 1995). Interactions of 
polyamines with Ca2+ channels (Williams 1997; 
Nichols and Lopatin 1997 and Johnson 1996) 
leading to maintain the cellular ionic balance in 
plant growth and development has also been 
reported (Aziz et al. 1999). 

Deviants for sigmoidal curves  
The deviation from logical augmentations of 

linear correlation in spermidine role is ascribed to 
various aspects (Figure 1-5). Polyamines 
concentration and specificity is thought to be 
critical on many plant developmental processes 
i.e. cell division rate, root growth, floral initiation, 
somatic embryogenesis and development of fruit 
in various plant species (Evans and Malmberg 
1989; Galston and Kaur-Sawhney 1990). Another 
reason might be that metabolism of polyamines in 
plants changes and the intensity and direction of 
these changes depend on the genotype of the 
plant as well as on the type, concentration and 
duration of the effect of the stress factor if present 
(Bouchereau et al. 1999; Kubis 2006). 
Attachments of spermidine to a specific protein 
(Cohen et al. 1982) leading to post-translationally 
modification of protein might change the effective 
concentration of polyamine with generation of a 
protein with a different morphogenetic role. 
Variation in efficiency of spermidine might be 
dependent on presence and stability of 
transglutaminase as spermidine binding to protein 
is mediated by transglutaminase (Williams et al. 
1980).  

In addition to transglutaminase, other 
enzymes with polyamine-binding activity have 
been reported in plant tissue (Icekson and 
Apelbaum, 1987; Serafini et al, 1988). The data of 
current study don’t have direct evidences about 
the spermidine binding to cell proteins which is 
mediated via transglutaminase, but possibility is 
consistent.  

Polyamines treatment prevents chlorophyll 
loss and preserves thylakoid membrane structure 
this might be through their interaction with 
membranous negatively charged loci (Nakatani et 
al, 1978; Prochaska and Gross, 1977), while 
sometimes this structural integrity could be 
maintained or accompanied by inactivation of 
thylakoid. For explanatory evidences are 
explainable with analysis of differential proteolysis 
of thylakoids which are required for stability and 

functioning of chlorophyll. There increases in 
proteinase activity occurs at the time of leaf 
senescence (Martin and Thimann, 1972; Peterson 
and Huffakar, 1975). Another possible reason for 
that application of high dose polyamines may not 
have positive effects on plant as accumulation of 
free cellular spermidine could be a symbol of plant 
growth and development. The polyamines in the 
conjugated forms are the valuable source under 
plant stressed conditions for their active forms 
(Tonon et al. 2007). 

CONCLUSION 
The optimum dose of spermidine for studied 
characters was proven at the rate of 1.25 mM. 
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